Suppr超能文献

相似文献

1
Joint associations between established genetic susceptibility loci, pesticide exposures, and risk of prostate cancer.
Environ Res. 2023 Nov 15;237(Pt 2):117063. doi: 10.1016/j.envres.2023.117063. Epub 2023 Sep 1.
3
Genetic variation in base excision repair pathway genes, pesticide exposure, and prostate cancer risk.
Environ Health Perspect. 2011 Dec;119(12):1726-32. doi: 10.1289/ehp.1103454. Epub 2011 Aug 2.
4
Pesticide use modifies the association between genetic variants on chromosome 8q24 and prostate cancer.
Cancer Res. 2010 Nov 15;70(22):9224-33. doi: 10.1158/0008-5472.CAN-10-1078. Epub 2010 Oct 26.
5
Genetic variation in nucleotide excision repair pathway genes, pesticide exposure and prostate cancer risk.
Carcinogenesis. 2012 Feb;33(2):331-7. doi: 10.1093/carcin/bgr258. Epub 2011 Nov 18.
6
Genetic susceptibility loci, pesticide exposure and prostate cancer risk.
PLoS One. 2013 Apr 4;8(4):e58195. doi: 10.1371/journal.pone.0058195. Print 2013.
7
Fonofos exposure and cancer incidence in the agricultural health study.
Environ Health Perspect. 2006 Dec;114(12):1838-42. doi: 10.1289/ehp.9301.
8
Pesticide exposure and risk of aggressive prostate cancer among private pesticide applicators.
Environ Health. 2020 Mar 5;19(1):30. doi: 10.1186/s12940-020-00583-0.
10
Risk of total and aggressive prostate cancer and pesticide use in the Agricultural Health Study.
Am J Epidemiol. 2013 Jan 1;177(1):59-74. doi: 10.1093/aje/kws225. Epub 2012 Nov 21.

引用本文的文献

1
CDH3 Is an Effective Serum Biomarker of Colorectal Cancer Distant Metastasis Patients.
J Cancer. 2024 Aug 13;15(16):5218-5229. doi: 10.7150/jca.98337. eCollection 2024.
2
The adverse role of endocrine disrupting chemicals in the reproductive system.
Front Endocrinol (Lausanne). 2024 Jan 17;14:1324993. doi: 10.3389/fendo.2023.1324993. eCollection 2023.

本文引用的文献

1
Dimethoate induces genotoxicity as a result of oxidative stress: in vivo and in vitro studies.
Environ Sci Pollut Res Int. 2021 Aug;28(32):43274-43286. doi: 10.1007/s11356-021-15090-z. Epub 2021 Jun 29.
2
Combined Effect of a Polygenic Risk Score and Rare Genetic Variants on Prostate Cancer Risk.
Eur Urol. 2021 Aug;80(2):134-138. doi: 10.1016/j.eururo.2021.04.013. Epub 2021 May 1.
4
KEGG: integrating viruses and cellular organisms.
Nucleic Acids Res. 2021 Jan 8;49(D1):D545-D551. doi: 10.1093/nar/gkaa970.
5
Pesticide exposure and risk of aggressive prostate cancer among private pesticide applicators.
Environ Health. 2020 Mar 5;19(1):30. doi: 10.1186/s12940-020-00583-0.
6
Shaping Chromatin States in Prostate Cancer by Pioneer Transcription Factors.
Cancer Res. 2020 Jun 15;80(12):2427-2436. doi: 10.1158/0008-5472.CAN-19-3447. Epub 2020 Feb 24.
7
Oxidative stress-mediated genotoxicity of malathion in human lymphocytes.
Mutat Res Genet Toxicol Environ Mutagen. 2020 Jan;849:503138. doi: 10.1016/j.mrgentox.2020.503138. Epub 2020 Jan 17.
8
ShinyGO: a graphical gene-set enrichment tool for animals and plants.
Bioinformatics. 2020 Apr 15;36(8):2628-2629. doi: 10.1093/bioinformatics/btz931.
9
Clarifying the role of EMSY in DNA repair in ovarian cancer.
Cancer. 2019 Aug 15;125(16):2720-2724. doi: 10.1002/cncr.32135. Epub 2019 Jun 2.
10
Cancer incidence in the Agricultural Health Study after 20 years of follow-up.
Cancer Causes Control. 2019 Apr;30(4):311-322. doi: 10.1007/s10552-019-01140-y. Epub 2019 Feb 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验