Department of Civil and Environmental Engineering and Mechanical Engineering, Northwestern University, Evanston, IL 60208-3111, USA.
Nanotechnology. 2013 May 17;24(19):195103. doi: 10.1088/0957-4484/24/19/195103. Epub 2013 Apr 17.
Cyclic peptide nanotubes (CPNs) exhibit impressive structural, mechanical and chemical properties in resemblance to beta-sheet proteins found in silks and amyloids, and show potential as supramolecular nanotubes that can be utilized to generate novel nanocomposites and nanoporous thin films. Quantifying the persistence length and thermomechanical fragmentation of CPNs is of great importance for establishing a theoretical basis of how to generate rectilinear nanostructures with controlled aspect ratio and rigidity. However, factors governing the elasticity and dynamical breaking of these supramolecular nanostructures remain to be fully understood. Here we present a statistical analysis of the Young's modulus and persistence length of CPNs using fully-atomistic molecular dynamic simulations in explicit solvent. We show that the measured properties exhibit a dependence on the magnitude of the shear force applied, and extrapolation to the quasi-static deformation case yields 0.46 μm for the persistence length and 7.8 GPa for the Young's modulus, in agreement with our experimental observations from TEM images. We establish a theoretical model for the spatial and temporal distribution of stochastic fracture, which we use to explain the simulation-based observations of spontaneous fragmentation under an applied shear force. Our methodology, blending theory, simulation and experiments provide a framework that can be utilized to investigate the mechanical behavior of self-assembling protein materials, paving the way for their design towards biological and industrial applications.
环肽纳米管 (CPN) 具有令人印象深刻的结构、机械和化学性质,类似于丝和淀粉样蛋白中发现的 β-折叠蛋白,并显示出作为超分子纳米管的潜力,可用于生成新型纳米复合材料和纳米多孔薄膜。量化 CPN 的持久长度和热机械断裂对于建立如何生成具有可控纵横比和刚性的直线形纳米结构的理论基础非常重要。然而,控制这些超分子纳米结构弹性和动态断裂的因素仍有待充分理解。在这里,我们使用显式溶剂中的全原子分子动力学模拟对 CPN 的杨氏模量和持久长度进行了统计分析。我们表明,所测量的性质与施加的剪切力的大小有关,并且外推到准静态变形情况得出持久长度为 0.46 μm,杨氏模量为 7.8 GPa,与我们从 TEM 图像得出的实验观察结果一致。我们建立了一个用于随机断裂的空间和时间分布的理论模型,我们使用该模型来解释在施加剪切力下自发断裂的模拟观察结果。我们的方法融合了理论、模拟和实验,为研究自组装蛋白质材料的力学行为提供了一个框架,为其在生物和工业应用中的设计铺平了道路。