Suppr超能文献

D,L-环肽组装体的结构、纳机械和计算特性研究。

Structural, nanomechanical, and computational characterization of D,L-cyclic peptide assemblies.

机构信息

†Harvard University, School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, United States.

‡Wyss Institute for Biologically Inspired Engineering, Cambridge, Massachusetts 02138, United States.

出版信息

ACS Nano. 2015 Mar 24;9(3):3360-8. doi: 10.1021/acsnano.5b00672. Epub 2015 Mar 13.

Abstract

The rigid geometry and tunable chemistry of D,L-cyclic peptides makes them an intriguing building-block for the rational design of nano- and microscale hierarchically structured materials. Herein, we utilize a combination of electron microscopy, nanomechanical characterization including depth sensing-based bending experiments, and molecular modeling methods to obtain the structural and mechanical characteristics of cyclo-[(Gln-D-Leu)4] (QL4) assemblies. QL4 monomers assemble to form large, rod-like structures with diameters up to 2 μm and lengths of tens to hundreds of micrometers. Image analysis suggests that large assemblies are hierarchically organized from individual tubes that undergo bundling to form larger structures. With an elastic modulus of 11.3 ± 3.3 GPa, hardness of 387 ± 136 MPa and strength (bending) of 98 ± 19 MPa the peptide crystals are among the most robust known proteinaceous micro- and nanofibers. The measured bending modulus of micron-scale fibrils (10.5 ± 0.9 GPa) is in the same range as the Young's modulus measured by nanoindentation indicating that the robust nanoscale network from which the assembly derives its properties is preserved at larger length-scales. Materials selection charts are used to demonstrate the particularly robust properties of QL4 including its specific flexural modulus in which it outperforms a number of biological proteinaceous and nonproteinaceous materials including collagen and enamel. The facile synthesis, high modulus, and low density of QL4 fibers indicate that they may find utility as a filler material in a variety of high efficiency, biocompatible composite materials.

摘要

D,L-环肽的刚性几何形状和可调化学性质使其成为合理设计纳米和微尺度分级结构材料的有趣构建块。在此,我们结合电子显微镜、纳米力学特性包括基于深度感应的弯曲实验以及分子建模方法,来获得环-[(谷氨酰胺-D-亮氨酸)4](QL4)组装体的结构和力学特性。QL4 单体组装形成大的、棒状结构,直径可达 2μm,长度可达数十至数百微米。图像分析表明,大的组装体是由单个管进行捆绑形成更大结构的方式从个体上进行分级组织的。QL4 晶体的弹性模量为 11.3 ± 3.3 GPa,硬度为 387 ± 136 MPa,强度(弯曲)为 98 ± 19 MPa,是已知最坚固的蛋白质微纤维和纳米纤维之一。微米级纤维的测量弯曲模量(10.5 ± 0.9 GPa)与纳米压痕测量的杨氏模量相同,这表明组装体从中获得其性能的坚固纳米级网络在较大长度尺度上得以保留。材料选择图用于展示 QL4 的特别坚固特性,包括其特定的弯曲模量,在该模量方面,它优于许多生物蛋白和非蛋白材料,包括胶原蛋白和牙釉质。QL4 纤维易于合成、模量高、密度低,这表明它们可能在各种高效、生物相容的复合材料中作为填充材料得到应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验