Suppr超能文献

Thermos:从体内结合谱估计蛋白质-DNA 结合能。

TherMos: Estimating protein-DNA binding energies from in vivo binding profiles.

机构信息

Computational and Systems Biology, Genome Institute of Singapore, 60 Biopolis St, Singapore 138672, Singapore.

出版信息

Nucleic Acids Res. 2013 Jun;41(11):5555-68. doi: 10.1093/nar/gkt250. Epub 2013 Apr 16.

Abstract

Accurately characterizing transcription factor (TF)-DNA affinity is a central goal of regulatory genomics. Although thermodynamics provides the most natural language for describing the continuous range of TF-DNA affinity, traditional motif discovery algorithms focus instead on classification paradigms that aim to discriminate 'bound' and 'unbound' sequences. Moreover, these algorithms do not directly model the distribution of tags in ChIP-seq data. Here, we present a new algorithm named Thermodynamic Modeling of ChIP-seq (TherMos), which directly estimates a position-specific binding energy matrix (PSEM) from ChIP-seq/exo tag profiles. In cross-validation tests on seven genome-wide TF-DNA binding profiles, one of which we generated via ChIP-seq on a complex developing tissue, TherMos predicted quantitative TF-DNA binding with greater accuracy than five well-known algorithms. We experimentally validated TherMos binding energy models for Klf4 and Esrrb, using a novel protocol to measure PSEMs in vitro. Strikingly, our measurements revealed strong non-additivity at multiple positions within the two PSEMs. Among the algorithms tested, only TherMos was able to model the entire binding energy landscape of Klf4 and Esrrb. Our study reveals new insights into the energetics of TF-DNA binding in vivo and provides an accurate first-principles approach to binding energy inference from ChIP-seq and ChIP-exo data.

摘要

准确刻画转录因子(TF)-DNA 亲和力是调控基因组学的核心目标。尽管热力学为描述 TF-DNA 亲和力的连续范围提供了最自然的语言,但传统的基序发现算法却专注于分类范式,旨在区分“结合”和“未结合”序列。此外,这些算法并没有直接对 ChIP-seq 数据中的标签分布进行建模。在这里,我们提出了一种名为 ChIP-seq 热力学建模(TherMos)的新算法,它可以直接从 ChIP-seq/exo 标签谱中估计位置特异性结合能矩阵(PSEM)。在对七个全基因组 TF-DNA 结合谱的交叉验证测试中,其中一个我们通过 ChIP-seq 在复杂的发育组织中生成,TherMos 预测的定量 TF-DNA 结合比五个知名算法更准确。我们使用一种新的测量方案在体外测量了 Klf4 和 Esrrb 的 Thermos 结合能模型,对其进行了实验验证。引人注目的是,我们的测量结果揭示了两个 PSEM 中多个位置的强烈非加性。在所测试的算法中,只有 TherMos 能够模拟 Klf4 和 Esrrb 的整个结合能景观。我们的研究揭示了体内 TF-DNA 结合的能量学的新见解,并为从 ChIP-seq 和 ChIP-exo 数据中推断结合能提供了一种准确的第一性原理方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a99/3675472/aa1f7767f534/gkt250f1p.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验