Aston Brain Centre, School of Life and Health Sciences, Aston University Birmingham, UK.
Front Hum Neurosci. 2013 Apr 10;7:132. doi: 10.3389/fnhum.2013.00132. eCollection 2013.
An expanding corpus of research details the relationship between functional magnetic resonance imaging (fMRI) measures and neuronal network oscillations. Typically, integrated electroencephalography and fMRI, or parallel magnetoencephalography (MEG) and fMRI are used to draw inference about the consanguinity of BOLD and electrical measurements. However, there is a relative dearth of information about the relationship between E/MEG and the focal networks from which these signals emanate. Consequently, the genesis and composition of E/MEG oscillations requires further clarification. Here we aim to contribute to understanding through a series of parallel measurements of primary motor cortex (M1) oscillations, using human MEG and in vitro rodent local field potentials. We compare spontaneous activity in the ∼10 Hz mu and 15-30 Hz beta frequency ranges and compare MEG signals with independent and integrated layers III and V (LIII/LV) from in vitro recordings. We explore the mechanisms of oscillatory generation, using specific pharmacological modulation with the GABA-A alpha-1 subunit modulator zolpidem. Finally, to determine the contribution of cortico-cortical connectivity, we recorded in vitro M1, during an incision to sever lateral connections between M1 and S1 cortices. We demonstrate that frequency distribution of MEG signals appear have closer statistically similarity with signals from integrated rather than independent LIII/LV laminae. GABAergic modulation in both modalities elicited comparable changes in the power of the beta band. Finally, cortico-cortical connectivity in sensorimotor cortex (SMC) appears to directly influence the power of the mu rhythm in LIII. These findings suggest that the MEG signal is an amalgam of outputs from LIII and LV, that multiple frequencies can arise from the same cortical area and that in vitro and MEG M1 oscillations are driven by comparable mechanisms. Finally, cortico-cortical connectivity is reflected in the power of the SMC mu rhythm.
越来越多的研究详细描述了功能磁共振成像(fMRI)测量值与神经元网络振荡之间的关系。通常,综合脑电图和 fMRI,或并行脑磁图(MEG)和 fMRI 用于推断 BOLD 和电测量之间的亲缘关系。然而,关于 E/MEG 与这些信号发出的焦点网络之间的关系的信息相对较少。因此,E/MEG 振荡的起源和组成需要进一步澄清。在这里,我们旨在通过一系列对主要运动皮层(M1)振荡的平行测量来做出贡献,使用人类 MEG 和体外啮齿动物局部场电位。我们比较了∼10 Hz 的 mu 和 15-30 Hz 的β频率范围内的自发活动,并将 MEG 信号与体外记录的独立和整合的第 III 和第 V 层(LIII/LV)进行比较。我们使用 GABA-A alpha-1 亚基调节剂唑吡坦进行特定的药理学调制,探索振荡产生的机制。最后,为了确定皮质-皮质连接的贡献,我们在体外记录 M1,在此期间进行切口以切断 M1 和 S1 皮质之间的外侧连接。我们证明 MEG 信号的频率分布似乎与整合而不是独立的 LIII/LV 层的信号具有更密切的统计相似性。两种方式的 GABA 能调制都引起了β频带功率的可比变化。最后,感觉运动皮层(SMC)中的皮质-皮质连接似乎直接影响 LIII 中的 mu 节律的功率。这些发现表明,MEG 信号是 LIII 和 LV 的输出的混合体,多个频率可以来自同一皮质区域,并且体外和 MEG M1 振荡由可比的机制驱动。最后,皮质-皮质连接反映在 SMC mu 节律的功率中。