Lin Fa-Hsuan, Witzel Thomas, Hämäläinen Matti S, Dale Anders M, Belliveau John W, Stufflebeam Steven M
MGH-MIT-MHS Athinoula A. Martinos Center for Biomedical Imaging, 13th Street, Charlestown, MA 02129, USA.
Neuroimage. 2004 Oct;23(2):582-95. doi: 10.1016/j.neuroimage.2004.04.027.
This paper presents a computationally efficient source estimation algorithm that localizes cortical oscillations and their phase relationships. The proposed method employs wavelet-transformed magnetoencephalography (MEG) data and uses anatomical MRI to constrain the current locations to the cortical mantle. In addition, the locations of the sources can be further confined with the help of functional MRI (fMRI) data. As a result, we obtain spatiotemporal maps of spectral power and phase relationships. As an example, we show how the phase locking value (PLV), that is, the trial-by-trial phase relationship between the stimulus and response, can be imaged on the cortex. We apply the method to spontaneous, evoked, and driven cortical oscillations measured with MEG. We test the method of combining MEG, structural MRI, and fMRI using simulated cortical oscillations along Heschl's gyrus (HG). We also analyze sustained auditory gamma-band neuromagnetic fields from MEG and fMRI measurements. Our results show that combining the MEG recording with fMRI improves source localization for the non-noise-normalized wavelet power. In contrast, noise-normalized spectral power or PLV localization may not benefit from the fMRI constraint. We show that if the thresholds are not properly chosen, noise-normalized spectral power or PLV estimates may contain false (phantom) sources, independent of the inclusion of the fMRI prior information. The proposed algorithm can be used for evoked MEG/EEG and block-designed or event-related fMRI paradigms, or for spontaneous MEG data sets. Spectral spatiotemporal imaging of cortical oscillations and interactions in the human brain can provide further understanding of large-scale neural activity and communication between different brain regions.
本文提出了一种计算效率高的源估计算法,用于定位皮层振荡及其相位关系。所提出的方法采用小波变换后的脑磁图(MEG)数据,并利用解剖学磁共振成像(MRI)将电流位置限制在皮层表面。此外,借助功能磁共振成像(fMRI)数据可进一步限制源的位置。结果,我们获得了频谱功率和相位关系的时空图。例如,我们展示了如何在皮层上成像相位锁定值(PLV),即刺激与反应之间逐次试验的相位关系。我们将该方法应用于通过MEG测量的自发、诱发和驱动的皮层振荡。我们使用沿颞横回(HG)模拟的皮层振荡来测试结合MEG、结构MRI和fMRI的方法。我们还分析了来自MEG和fMRI测量的持续听觉伽马波段神经磁场。我们的结果表明,将MEG记录与fMRI相结合可改善非噪声归一化小波功率的源定位。相比之下,噪声归一化频谱功率或PLV定位可能无法从fMRI约束中受益。我们表明,如果阈值选择不当,噪声归一化频谱功率或PLV估计可能包含虚假(幻影)源,而与是否包含fMRI先验信息无关。所提出的算法可用于诱发的MEG/EEG和组块设计或事件相关的fMRI范式,或用于自发的MEG数据集。对人类大脑皮层振荡和相互作用的频谱时空成像可以进一步了解大规模神经活动以及不同脑区之间的通信。