Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom.
IEEE Trans Pattern Anal Mach Intell. 2013 Jun;35(6):1451-63. doi: 10.1109/TPAMI.2012.234.
The recovery of structure from motion in real time over extended areas demands methods that mitigate the effects of computational complexity and arithmetical inconsistency. In this paper, we develop SCISM, an algorithm based on relative frame bundle adjustment, which splits the recovered map of 3D landmarks and keyframes poses so that the camera can continue to grow and explore a local map in real time while, at the same time, a bulk map is optimized in the background. By temporarily excluding certain measurements, it ensures that both maps are consistent, and by using the relative frame representation, new results from the bulk process can update the local process without disturbance. The paper first shows how to apply this representation to the parallel tracking and mapping (PTAM) method, a real-time bundle adjuster, and compares results obtained using global and relative frames. It then explains the relative representation's use in SCISM and describes an implementation using PTAM. The paper provides evidence of the algorithm's real-time operation in outdoor scenes, and includes comparison with a more conventional submapping approach.
在实时、大区域范围内从运动中恢复结构需要采用一些方法来减轻计算复杂度和数值不一致性的影响。在本文中,我们开发了 SCISM,一种基于相对帧束调整的算法,它可以分割恢复的 3D 地标和关键帧姿势图,以便相机可以在实时继续增长和探索局部地图,同时在后台优化批量地图。通过暂时排除某些测量值,它确保了两个地图的一致性,并通过使用相对帧表示,批量处理的新结果可以在不干扰的情况下更新局部处理。本文首先展示了如何将这种表示应用于并行跟踪和映射 (PTAM) 方法,即实时束调整器,并比较了使用全局和相对帧获得的结果。然后,它解释了相对表示在 SCISM 中的使用,并描述了使用 PTAM 的实现。本文提供了在户外场景中算法实时运行的证据,并与更传统的子映射方法进行了比较。