Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, 520 W Street, NW, Washington, DC 20059, USA.
Mol Cancer. 2013 Apr 22;12(1):29. doi: 10.1186/1476-4598-12-29.
Stalled replication forks at common fragile sites are a major cause of genomic instability. RecQ helicases, a highly conserved family of DNA-unwinding enzymes, are believed to ease 'roadblocks' that pose challenge to replication fork progression. Among the five known RecQ homologs in humans, functions of RECQ1, the most abundant of all, are poorly understood. We previously determined that RECQ1 helicase preferentially binds and unwinds substrates that mimic DNA replication/repair intermediates, and interacts with proteins involved in DNA replication restart mechanisms.
We have utilized chromatin immunoprecipitation followed by quantitative real-time PCR to investigate chromatin interactions of RECQ1 at defined genetic loci in the presence or absence of replication stress. We have also tested the sensitivity of RECQ1-depleted cells to aphidicolin induced replication stress.
RECQ1 binds to the origins of replication in unperturbed cells. We now show that conditions of replication stress induce increased accumulation of RECQ1 at the lamin B2 origin in HeLa cells. Consistent with a role in promoting fork recovery or repair, RECQ1 is specifically enriched at two major fragile sites FRA3B and FRA16D where replication forks have stalled following aphidicolin treatment. RECQ1-depletion results in attenuated checkpoint activation in response to replication stress, increased sensitivity to aphidicolin and chromosomal instability.
Given a recent biochemical observation that RECQ1 catalyzes strand exchange on stalled replication fork structures in vitro, our results indicate that RECQ1 facilitates repair of stalled or collapsed replication forks and preserves genome integrity. Our findings provide the first evidence of a crucial role for RECQ1 at naturally occurring fork stalling sites and implicate RECQ1 in mechanisms underlying common fragile site instability in cancer.
常见的脆性部位的复制叉停滞是基因组不稳定的主要原因。RecQ 解旋酶是一种高度保守的 DNA 解旋酶家族,被认为可以缓解对复制叉推进构成挑战的“路障”。在人类中已知的五个 RecQ 同源物中,RECQ1 的功能(所有同源物中最丰富的)理解甚少。我们之前确定 RECQ1 解旋酶优先结合和解开模拟 DNA 复制/修复中间体的底物,并与参与 DNA 复制重新启动机制的蛋白质相互作用。
我们已经利用染色质免疫沉淀结合定量实时 PCR 来研究复制应激存在或不存在时 RECQ1 在特定遗传基因座上的染色质相互作用。我们还测试了 RECQ1 耗尽细胞对阿霉素诱导的复制应激的敏感性。
RECQ1 在未受干扰的细胞中与复制起点结合。我们现在表明,复制应激条件会导致 HeLa 细胞中 lamin B2 起点处 RECQ1 的积累增加。与促进叉恢复或修复的作用一致,RECQ1 在两个主要的脆性部位 FRA3B 和 FRA16D 处特异性富集,阿霉素处理后复制叉停滞。RECQ1 耗尽会导致复制应激时 checkpoint 激活减弱,对阿霉素的敏感性增加和染色体不稳定。
鉴于最近的生化观察结果表明 RECQ1 在体外催化停滞的复制叉结构的链交换,我们的结果表明 RECQ1 有助于修复停滞或崩溃的复制叉并保护基因组完整性。我们的发现为 RECQ1 在自然发生的叉停滞位点的关键作用提供了第一个证据,并暗示 RECQ1 参与了癌症中常见的脆性部位不稳定的机制。