Suppr超能文献

从 fMRI BOLD 信号中解码神经事件:现有方法的比较和新算法的开发。

Decoding neural events from fMRI BOLD signal: a comparison of existing approaches and development of a new algorithm.

机构信息

Department of Computer Science, University of Arkansas at Little Rock (UALR), 2801 S. University Ave., Little Rock, AR 72204, USA.

出版信息

Magn Reson Imaging. 2013 Jul;31(6):976-89. doi: 10.1016/j.mri.2013.03.015. Epub 2013 Apr 17.

Abstract

Neuroimaging methodology predominantly relies on the blood oxygenation level dependent (BOLD) signal. While the BOLD signal is a valid measure of neuronal activity, variances in fluctuations of the BOLD signal are not only due to fluctuations in neural activity. Thus, a remaining problem in neuroimaging analyses is developing methods that ensure specific inferences about neural activity that are not confounded by unrelated sources of noise in the BOLD signal. Here, we develop and test a new algorithm for performing semiblind (i.e., no knowledge of stimulus timings) deconvolution of the BOLD signal that treats the neural event as an observable, but intermediate, probabilistic representation of the system's state. We test and compare this new algorithm against three other recent deconvolution algorithms under varied levels of autocorrelated and Gaussian noise, hemodynamic response function (HRF) misspecification and observation sampling rate. Further, we compare the algorithms' performance using two models to simulate BOLD data: a convolution of neural events with a known (or misspecified) HRF versus a biophysically accurate balloon model of hemodynamics. We also examine the algorithms' performance on real task data. The results demonstrated good performance of all algorithms, though the new algorithm generally outperformed the others (3.0% improvement) under simulated resting-state experimental conditions exhibiting multiple, realistic confounding factors (as well as 10.3% improvement on a real Stroop task). The simulations also demonstrate that the greatest negative influence on deconvolution accuracy is observation sampling rate. Practical and theoretical implications of these results for improving inferences about neural activity from fMRI BOLD signal are discussed.

摘要

神经影像学方法主要依赖血氧水平依赖(BOLD)信号。虽然 BOLD 信号是神经元活动的有效测量指标,但 BOLD 信号的波动不仅归因于神经元活动的波动。因此,神经影像学分析中仍然存在一个问题,即开发确保对神经活动进行特定推断的方法,这些推断不会受到 BOLD 信号中无关噪声源的混淆。在这里,我们开发并测试了一种新的算法,用于对 BOLD 信号进行半盲(即不知道刺激时间)反卷积,该算法将神经事件视为系统状态的可观察但中间概率表示。我们在不同程度的自相关和高斯噪声、血流动力学响应函数(HRF)失配和观测采样率下,将这种新算法与其他三种最近的反卷积算法进行了测试和比较。此外,我们使用两种模型来模拟 BOLD 数据比较算法的性能:用已知(或失配)的 HRF 对神经事件进行卷积,与血液动力学的生物物理准确气球模型进行比较。我们还检查了算法在真实任务数据上的性能。结果表明,所有算法的性能都很好,尽管在模拟静息状态实验条件下,新算法通常表现优于其他算法(表现出多种现实混杂因素时,性能提高 3.0%;在真实 Stroop 任务中,性能提高 10.3%)。模拟还表明,对反卷积准确性影响最大的是观测采样率。讨论了这些结果对从 fMRI BOLD 信号推断神经活动的实际和理论意义。

相似文献

1
Decoding neural events from fMRI BOLD signal: a comparison of existing approaches and development of a new algorithm.
Magn Reson Imaging. 2013 Jul;31(6):976-89. doi: 10.1016/j.mri.2013.03.015. Epub 2013 Apr 17.
2
Improving the precision of fMRI BOLD signal deconvolution with implications for connectivity analysis.
Magn Reson Imaging. 2015 Dec;33(10):1314-1323. doi: 10.1016/j.mri.2015.07.007. Epub 2015 Jul 28.
3
A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data.
Med Image Anal. 2013 Apr;17(3):365-74. doi: 10.1016/j.media.2013.01.003. Epub 2013 Jan 29.
4
Bayesian deconvolution of [corrected] fMRI data using bilinear dynamical systems.
Neuroimage. 2008 Oct 1;42(4):1381-96. doi: 10.1016/j.neuroimage.2008.05.052. Epub 2008 Jun 6.
5
Deconvolution filtering: temporal smoothing revisited.
Magn Reson Imaging. 2014 Jul;32(6):721-35. doi: 10.1016/j.mri.2014.03.002. Epub 2014 Mar 15.
6
Making the most of fMRI at 7 T by suppressing spontaneous signal fluctuations.
Neuroimage. 2009 Jan 15;44(2):448-54. doi: 10.1016/j.neuroimage.2008.08.037. Epub 2008 Sep 12.
7
PHYCAA: data-driven measurement and removal of physiological noise in BOLD fMRI.
Neuroimage. 2012 Jan 16;59(2):1299-314. doi: 10.1016/j.neuroimage.2011.08.021. Epub 2011 Aug 16.
10
The influence of spatial resolution and smoothing on the detectability of resting-state and task fMRI.
Neuroimage. 2014 Feb 1;86:221-30. doi: 10.1016/j.neuroimage.2013.09.001. Epub 2013 Sep 8.

引用本文的文献

2
Prefrontal default-mode network interactions with posterior hippocampus during exploration.
bioRxiv. 2025 Mar 13:2025.03.12.642890. doi: 10.1101/2025.03.12.642890.
3
Measuring the effects of motion corruption in fetal fMRI.
Hum Brain Mapp. 2025 Feb 1;46(2):e26806. doi: 10.1002/hbm.26806.
7
Whole-brain multivariate hemodynamic deconvolution for functional MRI with stability selection.
Med Image Anal. 2024 Jan;91:103010. doi: 10.1016/j.media.2023.103010. Epub 2023 Nov 7.
8
The confound of hemodynamic response function variability in human resting-state functional MRI studies.
Front Neurosci. 2023 Jul 14;17:934138. doi: 10.3389/fnins.2023.934138. eCollection 2023.
9
Estimation of neuronal task information in fMRI using zero frequency resonator.
Neuroimage. 2023 Feb 15;267:119865. doi: 10.1016/j.neuroimage.2023.119865. Epub 2023 Jan 5.

本文引用的文献

1
Effective connectivity: influence, causality and biophysical modeling.
Neuroimage. 2011 Sep 15;58(2):339-61. doi: 10.1016/j.neuroimage.2011.03.058. Epub 2011 Apr 6.
2
Dynamic modeling of neuronal responses in fMRI using cubature Kalman filtering.
Neuroimage. 2011 Jun 15;56(4):2109-28. doi: 10.1016/j.neuroimage.2011.03.005. Epub 2011 Mar 9.
3
The effect of intra- and inter-subject variability of hemodynamic responses on group level Granger causality analyses.
Neuroimage. 2011 Jul 1;57(1):22-36. doi: 10.1016/j.neuroimage.2011.02.008. Epub 2011 Feb 26.
4
Neuronal event detection in fMRI time series using iterative deconvolution techniques.
Magn Reson Imaging. 2011 Apr;29(3):353-64. doi: 10.1016/j.mri.2010.10.012. Epub 2011 Jan 12.
5
Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging.
PLoS One. 2010 Dec 20;5(12):e15710. doi: 10.1371/journal.pone.0015710.
6
Detection and characterization of single-trial fMRI bold responses: paradigm free mapping.
Hum Brain Mapp. 2011 Sep;32(9):1400-18. doi: 10.1002/hbm.21116. Epub 2010 Oct 20.
7
Network modelling methods for FMRI.
Neuroimage. 2011 Jan 15;54(2):875-91. doi: 10.1016/j.neuroimage.2010.08.063. Epub 2010 Sep 15.
8
The identification of interacting networks in the brain using fMRI: Model selection, causality and deconvolution.
Neuroimage. 2011 Sep 15;58(2):296-302. doi: 10.1016/j.neuroimage.2009.09.036. Epub 2009 Sep 25.
10
Identifying neural drivers with functional MRI: an electrophysiological validation.
PLoS Biol. 2008 Dec 23;6(12):2683-97. doi: 10.1371/journal.pbio.0060315.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验