Rodriguez-Rocha Humberto, Garcia-Garcia Aracely, Pickett Chillian, Li Sumin, Jones Jocelyn, Chen Han, Webb Brian, Choi Jae, Zhou You, Zimmerman Matthew C, Franco Rodrigo
Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68583-0905, USA; School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583-0905, USA.
Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA.
Free Radic Biol Med. 2013 Aug;61:370-83. doi: 10.1016/j.freeradbiomed.2013.04.021. Epub 2013 Apr 19.
The loss of dopaminergic neurons induced by the parkinsonian toxins paraquat, rotenone, and 1-methyl-4-phenylpyridinium (MPP(+)) is associated with oxidative stress. However, controversial reports exist regarding the source/compartmentalization of reactive oxygen species (ROS) generation and its exact role in cell death. We aimed to determine in detail the role of superoxide anion (O2(•-)), oxidative stress, and their subcellular compartmentalization in dopaminergic cell death induced by parkinsonian toxins. Oxidative stress and ROS formation were determined in the cytosol, intermembrane (IMS), and mitochondrial matrix compartments, using dihydroethidine derivatives and the redox sensor roGFP, as well as electron paramagnetic resonance spectroscopy. Paraquat induced an increase in ROS and oxidative stress in both the cytosol and the mitochondrial matrix prior to cell death. MPP(+) and rotenone primarily induced an increase in ROS and oxidative stress in the mitochondrial matrix. No oxidative stress was detected at the level of the IMS. In contrast to previous studies, overexpression of manganese superoxide dismutase (MnSOD) or copper/zinc SOD (CuZnSOD) had no effect on alterations in ROS steady-state levels, lipid peroxidation, loss of mitochondrial membrane potential (ΔΨm), and dopaminergic cell death induced by MPP(+) or rotenone. In contrast, paraquat-induced oxidative stress and cell death were selectively reduced by MnSOD overexpression, but not by CuZnSOD or manganese-porphyrins. However, MnSOD also failed to prevent ΔΨm loss. Finally, paraquat, but not MPP(+) or rotenone, induced the transcriptional activation of the redox-sensitive antioxidant response elements (ARE) and nuclear factor kappa-B (NF-κB). These results demonstrate a selective role of mitochondrial O2(•-) in dopaminergic cell death induced by paraquat, and show that toxicity induced by the complex I inhibitors rotenone and MPP(+) does not depend directly on mitochondrial O2(•-) formation.
帕金森病毒素百草枯、鱼藤酮和1-甲基-4-苯基吡啶鎓(MPP(+))诱导的多巴胺能神经元丧失与氧化应激有关。然而,关于活性氧(ROS)产生的来源/区室化及其在细胞死亡中的确切作用,存在相互矛盾的报道。我们旨在详细确定超氧阴离子(O2(•-))、氧化应激及其亚细胞区室化在帕金森病毒素诱导的多巴胺能细胞死亡中的作用。使用二氢乙锭衍生物和氧化还原传感器roGFP以及电子顺磁共振光谱,在细胞质、线粒体内膜间隙(IMS)和线粒体基质区室中测定氧化应激和ROS形成。百草枯在细胞死亡前诱导细胞质和线粒体基质中的ROS和氧化应激增加。MPP(+)和鱼藤酮主要诱导线粒体基质中的ROS和氧化应激增加。在IMS水平未检测到氧化应激。与先前的研究相反,锰超氧化物歧化酶(MnSOD)或铜/锌超氧化物歧化酶(CuZnSOD)的过表达对MPP(+)或鱼藤酮诱导的ROS稳态水平改变、脂质过氧化、线粒体膜电位(ΔΨm)丧失和多巴胺能细胞死亡没有影响。相反,MnSOD过表达可选择性降低百草枯诱导的氧化应激和细胞死亡,但CuZnSOD或锰卟啉则不能。然而,MnSOD也未能阻止ΔΨm丧失。最后,百草枯而非MPP(+)或鱼藤酮诱导氧化还原敏感的抗氧化反应元件(ARE)和核因子κB(NF-κB)的转录激活。这些结果证明线粒体O2(•-)在百草枯诱导的多巴胺能细胞死亡中具有选择性作用,并表明复合物I抑制剂鱼藤酮和MPP(+)诱导的毒性不直接依赖于线粒体O2(•-)的形成。