Suppr超能文献

基于四阶张量的扩散轮廓成像的K最优梯度编码方案

K-Optimal Gradient Encoding Scheme for Fourth-Order Tensor-Based Diffusion Profile Imaging.

作者信息

Alipoor Mohammad, Gu Irene Yu-Hua, Mehnert Andrew, Maier Stephan E, Starck Göran

机构信息

Department of Signals and Systems, Chalmers University of Technology, 41296 Gothenburg, Sweden.

Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA 6009, Australia.

出版信息

Biomed Res Int. 2015;2015:760230. doi: 10.1155/2015/760230. Epub 2015 Sep 14.

Abstract

The design of an optimal gradient encoding scheme (GES) is a fundamental problem in diffusion MRI. It is well studied for the case of second-order tensor imaging (Gaussian diffusion). However, it has not been investigated for the wide range of non-Gaussian diffusion models. The optimal GES is the one that minimizes the variance of the estimated parameters. Such a GES can be realized by minimizing the condition number of the design matrix (K-optimal design). In this paper, we propose a new approach to solve the K-optimal GES design problem for fourth-order tensor-based diffusion profile imaging. The problem is a nonconvex experiment design problem. Using convex relaxation, we reformulate it as a tractable semidefinite programming problem. Solving this problem leads to several theoretical properties of K-optimal design: (i) the odd moments of the K-optimal design must be zero; (ii) the even moments of the K-optimal design are proportional to the total number of measurements; (iii) the K-optimal design is not unique, in general; and (iv) the proposed method can be used to compute the K-optimal design for an arbitrary number of measurements. Our Monte Carlo simulations support the theoretical results and show that, in comparison with existing designs, the K-optimal design leads to the minimum signal deviation.

摘要

设计最优梯度编码方案(GES)是扩散磁共振成像中的一个基本问题。对于二阶张量成像(高斯扩散)的情况,该问题已得到充分研究。然而,对于广泛的非高斯扩散模型,尚未进行研究。最优GES是使估计参数的方差最小化的方案。这样的GES可以通过最小化设计矩阵的条件数(K最优设计)来实现。在本文中,我们提出了一种新方法来解决基于四阶张量的扩散剖面成像的K最优GES设计问题。该问题是一个非凸实验设计问题。利用凸松弛,我们将其重新表述为一个易于处理的半定规划问题。解决这个问题会得到K最优设计的几个理论性质:(i)K最优设计的奇矩必须为零;(ii)K最优设计的偶矩与测量总数成正比;(iii)一般来说,K最优设计不是唯一的;(iv)所提出的方法可用于计算任意测量次数的K最优设计。我们的蒙特卡罗模拟支持了理论结果,并表明,与现有设计相比,K最优设计导致最小的信号偏差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1b3/4584248/5654d14d6c4e/BMRI2015-760230.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验