Department of Statistics, University of California, One Shields Ave., Davis, CA 95616, United States.
Pennington Biomedical Research Center, Louisiana State University, 6400 Perkins Road, Baton Rouge, LA 70808, United States.
Med Image Anal. 2018 May;46:57-72. doi: 10.1016/j.media.2018.01.003. Epub 2018 Feb 8.
We present a novel method for estimation of the fiber orientation distribution (FOD) function based on diffusion-weighted magnetic resonance imaging (D-MRI) data. We formulate the problem of FOD estimation as a regression problem through spherical deconvolution and a sparse representation of the FOD by a spherical needlets basis that forms a multi-resolution tight frame for spherical functions. This sparse representation allows us to estimate the FOD by ℓ-penalized regression under a non-negativity constraint on the estimated FOD. The resulting convex optimization problem is solved by an alternating direction method of multipliers (ADMM) algorithm. The proposed method leads to a reconstruction of the FOD that is accurate, has low variability and preserves sharp features. Through extensive experiments, we demonstrate the effectiveness and favorable performance of the proposed method compared to three existing methods. Specifically, we demonstrate that the proposed method is able to successfully resolve fiber crossings at small angles and automatically identify isotropic diffusion. We also apply the proposed method to real 3T D-MRI data sets of healthy individuals. The results show realistic depictions of crossing fibers that are more accurate, less noisy, and lead to superior tractography results compared to competing methods.
我们提出了一种基于扩散加权磁共振成像(D-MRI)数据的纤维方向分布(FOD)函数估计的新方法。我们通过球面反卷积和 FOD 的稀疏表示将 FOD 估计问题表述为回归问题,该稀疏表示由球心needlets 基表示,球心 needlets 基构成了球函数的多分辨率紧框架。这种稀疏表示使得我们可以通过 ℓ 惩罚回归在对估计的 FOD 施加非负约束的情况下估计 FOD。所得到的凸优化问题通过交替方向乘子法(ADMM)算法求解。该方法可以准确地重建 FOD,具有较低的可变性并且保留了尖锐的特征。通过广泛的实验,我们证明了与三种现有方法相比,所提出的方法具有有效性和良好的性能。具体而言,我们证明了该方法能够成功地解决小角度的纤维交叉问题,并自动识别各向同性扩散。我们还将该方法应用于健康个体的真实 3T D-MRI 数据集。结果显示出了具有更高准确性、更低噪声的交叉纤维的现实描述,并导致与竞争方法相比具有更好的追踪结果。