Suppr超能文献

解开谜团:内质网网络形成的潜在机制。

Untangling the web: mechanisms underlying ER network formation.

作者信息

Goyal Uma, Blackstone Craig

机构信息

National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.

出版信息

Biochim Biophys Acta. 2013 Nov;1833(11):2492-8. doi: 10.1016/j.bbamcr.2013.04.009. Epub 2013 Apr 17.

Abstract

The ER is a continuous membrane system consisting of the nuclear envelope, flat sheets often studded with ribosomes, and a polygonal network of highly-curved tubules extending throughout the cell. Although protein and lipid biosynthesis, protein modification, vesicular transport, Ca(2+)dynamics, and protein quality control have been investigated in great detail, mechanisms that generate the distinctive architecture of the ER have been uncovered only recently. Several protein families including the reticulons and REEPs/DP1/Yop1p harbor hydrophobic hairpin domains that shape high-curvature ER tubules and mediate intramembrane protein interactions. Members of the atlastin/RHD3/Sey1p family of dynamin-related GTPases interact with the ER-shaping proteins and mediate the formation of three-way junctions responsible for the polygonal structure of the tubular ER network, with Lunapark proteins acting antagonistically. Additional classes of tubular ER proteins including some REEPs and the M1 spastin ATPase interact with the microtubule cytoskeleton. Flat ER sheets possess a different complement of proteins such as p180, CLIMP-63 and kinectin implicated in shaping, cisternal stacking and cytoskeletal interactions. The ER is also in constant motion, and numerous signaling pathways as well as interactions among cytoskeletal elements, the plasma membrane, and organelles cooperate to position and shape the ER dynamically. Finally, many proteins involved in shaping the ER network are mutated in the most common forms of hereditary spastic paraplegia, indicating a particular importance for proper ER morphology and distribution in large, highly-polarized cells such as neurons. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum.

摘要

内质网是一个连续的膜系统,由核膜、常附着有核糖体的扁平片层以及贯穿整个细胞的高度弯曲的多边形细管网络组成。尽管蛋白质和脂质生物合成、蛋白质修饰、囊泡运输、Ca(2+)动力学以及蛋白质质量控制已经得到了详细研究,但直到最近才发现形成内质网独特结构的机制。包括网织蛋白和REEPs/DP1/Yop1p在内的几个蛋白质家族具有疏水发夹结构域,这些结构域塑造了高曲率的内质网细管并介导膜内蛋白质相互作用。发动蛋白相关GTP酶的atlastin/RHD3/Sey1p家族成员与内质网塑形蛋白相互作用,并介导负责管状内质网网络多边形结构的三向连接的形成,而Lunapark蛋白则起拮抗作用。其他类别的管状内质网蛋白,包括一些REEPs和M1痉挛素ATP酶,与微管细胞骨架相互作用。扁平的内质网片层含有不同的蛋白质,如参与塑形、潴泡堆叠和细胞骨架相互作用的p180、CLIMP-63和驱动素连接蛋白。内质网也处于不断运动中,众多信号通路以及细胞骨架成分、质膜和细胞器之间的相互作用共同动态地定位和塑造内质网。最后,许多参与塑造内质网网络的蛋白质在最常见的遗传性痉挛性截瘫形式中发生突变,这表明内质网的正确形态和分布对于诸如神经元等大型、高度极化细胞尤为重要。本文是名为“内质网的功能和结构多样性”的特刊的一部分。

相似文献

1
Untangling the web: mechanisms underlying ER network formation.
Biochim Biophys Acta. 2013 Nov;1833(11):2492-8. doi: 10.1016/j.bbamcr.2013.04.009. Epub 2013 Apr 17.
2
Further assembly required: construction and dynamics of the endoplasmic reticulum network.
EMBO Rep. 2010 Jul;11(7):515-21. doi: 10.1038/embor.2010.92. Epub 2010 Jun 18.
3
ER structure and function.
Curr Opin Cell Biol. 2013 Aug;25(4):428-33. doi: 10.1016/j.ceb.2013.02.006. Epub 2013 Mar 13.
5
Molecular basis for sculpting the endoplasmic reticulum membrane.
Int J Biochem Cell Biol. 2012 Sep;44(9):1436-43. doi: 10.1016/j.biocel.2012.05.013. Epub 2012 May 26.
6
Reconstituting the reticular ER network - mechanistic implications and open questions.
J Cell Sci. 2019 Jan 22;132(4):jcs227611. doi: 10.1242/jcs.227611.
7
A class of dynamin-like GTPases involved in the generation of the tubular ER network.
Cell. 2009 Aug 7;138(3):549-61. doi: 10.1016/j.cell.2009.05.025.
8
The endoplasmic reticulum: a social network in plant cells.
J Integr Plant Biol. 2012 Nov;54(11):840-50. doi: 10.1111/j.1744-7909.2012.01176.x.
10
Arl6IP1 has the ability to shape the mammalian ER membrane in a reticulon-like fashion.
Biochem J. 2014 Feb 15;458(1):69-79. doi: 10.1042/BJ20131186.

引用本文的文献

1
Membrane Contact Sites in Proteostasis and ER Stress Response.
Contact (Thousand Oaks). 2025 Jul 28;8:25152564251363050. doi: 10.1177/25152564251363050. eCollection 2025 Jan-Dec.
2
Nodal modulator (NOMO) is a force-bearing transmembrane protein required for muscle differentiation.
J Cell Biol. 2025 Sep 1;224(9). doi: 10.1083/jcb.202505010. Epub 2025 Jul 15.
3
CDR2 is a dynein adaptor recruited by kinectin to regulate ER sheet organization.
J Cell Biol. 2025 Sep 1;224(9). doi: 10.1083/jcb.202411034. Epub 2025 Jul 10.
4
Connecting tubules: mechanisms of endoplasmic reticulum membrane fusion.
Biochem Soc Trans. 2025 Jun 30;53(3):699-707. doi: 10.1042/BST20253043.
5
7
9
Ectopic reconstitution of a spine-apparatus-like structure provides insight into mechanisms underlying its formation.
Curr Biol. 2025 Jan 20;35(2):265-276.e4. doi: 10.1016/j.cub.2024.11.010. Epub 2024 Dec 2.
10
CDR2 is a dynein adaptor recruited by kinectin to regulate ER sheet organization.
bioRxiv. 2024 Nov 6:2024.11.06.622207. doi: 10.1101/2024.11.06.622207.

本文引用的文献

1
Endoplasmic reticulum structure and interconnections with other organelles.
Cold Spring Harb Perspect Biol. 2013 Apr 1;5(4):a013227. doi: 10.1101/cshperspect.a013227.
2
ER structure and function.
Curr Opin Cell Biol. 2013 Aug;25(4):428-33. doi: 10.1016/j.ceb.2013.02.006. Epub 2013 Mar 13.
3
Rab10 joins the ER social network.
Nat Cell Biol. 2013 Feb;15(2):135-6. doi: 10.1038/ncb2682.
4
Structural basis for conformational switching and GTP loading of the large G protein atlastin.
EMBO J. 2013 Feb 6;32(3):369-84. doi: 10.1038/emboj.2012.353. Epub 2013 Jan 18.
5
Rab10 GTPase regulates ER dynamics and morphology.
Nat Cell Biol. 2013 Feb;15(2):169-78. doi: 10.1038/ncb2647. Epub 2012 Dec 23.
6
ER-to-plasma membrane tethering proteins regulate cell signaling and ER morphology.
Dev Cell. 2012 Dec 11;23(6):1129-40. doi: 10.1016/j.devcel.2012.11.004.
7
Rab proteins of the endoplasmic reticulum: functions and interactors.
Biochem Soc Trans. 2012 Dec 1;40(6):1426-32. doi: 10.1042/BST20120158.
9
RAB-5 and RAB-10 cooperate to regulate neuropeptide release in Caenorhabditis elegans.
Proc Natl Acad Sci U S A. 2012 Nov 13;109(46):18944-9. doi: 10.1073/pnas.1203306109. Epub 2012 Oct 25.
10
Nuclear pore complex composition: a new regulator of tissue-specific and developmental functions.
Nat Rev Mol Cell Biol. 2012 Nov;13(11):687-99. doi: 10.1038/nrm3461.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验