Suppr超能文献

Smad 信号通路调节胰腺内分泌发育。

Smad signaling pathways regulate pancreatic endocrine development.

机构信息

Department of Surgery, Division of Pediatric Surgery, Children's Hospital of Pittsburgh, One Children's Hospital Drive, 4401 Penn Ave., Pittsburgh, PA 15224, USA.

出版信息

Dev Biol. 2013 Jun 15;378(2):83-93. doi: 10.1016/j.ydbio.2013.04.003. Epub 2013 Apr 17.

Abstract

Expansion of the pancreatic endocrine cell population occurs during both embryonic development and during post-natal pancreatic growth and regeneration. Mechanisms of the expansion of endocrine cells during embryonic development are not completely understood, and no clear mechanistic link has been established between growth of the embryonic endocrine pancreas and the islet cell replication that occurs in an adult animal. We found that transforming growth factor-beta (TGF-β) superfamily signaling, which has been implicated in many developmental processes, plays a key role in regulating pancreatic endocrine maturation and development. Specifically, the intracellular mediators of TGF-β signaling, smad2 and smad3, along with their inhibitor smad7, appear to mediate this process. Smad2, smad3 and smad7 were all broadly expressed throughout the early embryonic pancreatic epithelium. However, during later stages of development, smad2 and smad3 became strongly localized to the nuclei of the endocrine positive cells, whereas the inhibitory smad7 became absent in the endocrine component. Genetic inactivation of smad2 and smad3 led to a significant expansion of the embryonic endocrine compartment, whereas genetic inactivation of smad7 led to a significant decrease in the endocrine compartment. In vitro antisense studies further corroborated these results and supported the possibility that interplay between the inhibitory smad7 and the intracellular mediators smad2/3 is a control point for pancreatic endocrine development. These results should provide a better understanding of the key control mechanisms for β-cell development.

摘要

胰腺内分泌细胞群体的扩增发生在胚胎发育过程中以及出生后胰腺的生长和再生过程中。胚胎发育过程中内分泌细胞扩增的机制尚不完全清楚,并且在胚胎内分泌胰腺的生长和成年动物中发生的胰岛细胞复制之间也没有明确的机制联系。我们发现,转化生长因子-β(TGF-β)超家族信号转导,它与许多发育过程有关,在调节胰腺内分泌成熟和发育中起着关键作用。具体而言,TGF-β信号的细胞内介质,smad2 和 smad3 及其抑制剂 smad7,似乎介导了这一过程。smad2、smad3 和 smad7 在早期胚胎胰腺上皮细胞中广泛表达。然而,在发育的后期阶段,smad2 和 smad3 强烈定位于内分泌阳性细胞的核内,而抑制性的 smad7 在内分泌成分中消失。smad2 和 smad3 的基因失活导致胚胎内分泌区室的显著扩张,而 smad7 的基因失活导致内分泌区室的显著减少。体外反义研究进一步证实了这些结果,并支持了抑制性 smad7 和细胞内介质 smad2/3 之间的相互作用是胰腺内分泌发育的控制点的可能性。这些结果应该为 β 细胞发育的关键控制机制提供更好的理解。

相似文献

1
Smad signaling pathways regulate pancreatic endocrine development.
Dev Biol. 2013 Jun 15;378(2):83-93. doi: 10.1016/j.ydbio.2013.04.003. Epub 2013 Apr 17.
2
High SMAD7 and p-SMAD2,3 expression is associated with environmental enteropathy in children.
PLoS Negl Trop Dis. 2018 Feb 7;12(2):e0006224. doi: 10.1371/journal.pntd.0006224. eCollection 2018 Feb.
5
Effect of Exogenous Fetuin-A on TGF-/Smad Signaling in Hepatic Stellate Cells.
Biomed Res Int. 2016;2016:8462615. doi: 10.1155/2016/8462615. Epub 2016 Nov 20.
7
Smad2 and Smad3 are redundantly essential for the TGF-beta-mediated regulation of regulatory T plasticity and Th1 development.
J Immunol. 2010 Jul 15;185(2):842-55. doi: 10.4049/jimmunol.0904100. Epub 2010 Jun 14.
8
Localization of TGF-beta signaling intermediates Smad2, 3, 4, and 7 in developing and mature human and mouse kidney.
J Histochem Cytochem. 2007 Mar;55(3):275-85. doi: 10.1369/jhc.6A7083.2006. Epub 2006 Dec 1.
9

引用本文的文献

2
Unraveling the interplay: exploring signaling pathways in pancreatic cancer in the context of pancreatic embryogenesis.
Front Cell Dev Biol. 2024 Aug 22;12:1461278. doi: 10.3389/fcell.2024.1461278. eCollection 2024.
5
Role of TGF-Beta Signaling in Beta Cell Proliferation and Function in Diabetes.
Biomolecules. 2022 Feb 26;12(3):373. doi: 10.3390/biom12030373.
6
β-cell Smad2 null mice have improved β-cell function and are protected from diet-induced hyperglycemia.
J Biol Chem. 2021 Nov;297(5):101235. doi: 10.1016/j.jbc.2021.101235. Epub 2021 Sep 25.
8
SMAD7 enhances adult β-cell proliferation without significantly affecting β-cell function in mice.
J Biol Chem. 2020 Apr 10;295(15):4858-4869. doi: 10.1074/jbc.RA119.011011. Epub 2020 Mar 2.
9
Cellular signaling pathways regulating β-cell proliferation as a promising therapeutic target in the treatment of diabetes.
Exp Ther Med. 2018 Oct;16(4):3275-3285. doi: 10.3892/etm.2018.6603. Epub 2018 Aug 13.
10
Gene expression signature predicts human islet integrity and transplant functionality in diabetic mice.
PLoS One. 2017 Oct 2;12(10):e0185331. doi: 10.1371/journal.pone.0185331. eCollection 2017.

本文引用的文献

1
A smad signaling network regulates islet cell proliferation.
Diabetes. 2014 Jan;63(1):224-36. doi: 10.2337/db13-0432. Epub 2013 Oct 2.
2
Whole-mount imaging demonstrates hypervascularity of the pancreatic ducts and other pancreatic structures.
Anat Rec (Hoboken). 2012 Mar;295(3):465-73. doi: 10.1002/ar.22420. Epub 2012 Jan 26.
6
MafA and MafB regulate genes critical to beta-cells in a unique temporal manner.
Diabetes. 2010 Oct;59(10):2530-9. doi: 10.2337/db10-0190. Epub 2010 Jul 13.
8
Regulation of TGF-beta signaling by Smad7.
Acta Biochim Biophys Sin (Shanghai). 2009 Apr;41(4):263-72. doi: 10.1093/abbs/gmp018.
9
Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth.
Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):19915-9. doi: 10.1073/pnas.0805803105. Epub 2008 Dec 3.
10
Transdifferentiation of pancreatic ductal cells to endocrine beta-cells.
Biochem Soc Trans. 2008 Jun;36(Pt 3):353-6. doi: 10.1042/BST0360353.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验