制备 14 种不同的 RNA 纳米颗粒,用于特定的肿瘤靶向,而不会在正常器官中积累。

Fabrication of 14 different RNA nanoparticles for specific tumor targeting without accumulation in normal organs.

机构信息

Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, USA.

出版信息

RNA. 2013 Jun;19(6):767-77. doi: 10.1261/rna.037002.112. Epub 2013 Apr 19.

Abstract

Due to structural flexibility, RNase sensitivity, and serum instability, RNA nanoparticles with concrete shapes for in vivo application remain challenging to construct. Here we report the construction of 14 RNA nanoparticles with solid shapes for targeting cancers specifically. These RNA nanoparticles were resistant to RNase degradation, stable in serum for >36 h, and stable in vivo after systemic injection. By applying RNA nanotechnology and exemplifying with these 14 RNA nanoparticles, we have established the technology and developed "toolkits" utilizing a variety of principles to construct RNA architectures with diverse shapes and angles. The structure elements of phi29 motor pRNA were utilized for fabrication of dimers, twins, trimers, triplets, tetramers, quadruplets, pentamers, hexamers, heptamers, and other higher-order oligomers, as well as branched diverse architectures via hand-in-hand, foot-to-foot, and arm-on-arm interactions. These novel RNA nanostructures harbor resourceful functionalities for numerous applications in nanotechnology and medicine. It was found that all incorporated functional modules, such as siRNA, ribozymes, aptamers, and other functionalities, folded correctly and functioned independently within the nanoparticles. The incorporation of all functionalities was achieved prior, but not subsequent, to the assembly of the RNA nanoparticles, thus ensuring the production of homogeneous therapeutic nanoparticles. More importantly, upon systemic injection, these RNA nanoparticles targeted cancer exclusively in vivo without accumulation in normal organs and tissues. These findings open a new territory for cancer targeting and treatment. The versatility and diversity in structure and function derived from one biological RNA molecule implies immense potential concealed within the RNA nanotechnology field.

摘要

由于结构的灵活性、对核糖核酸酶的敏感性以及在血清中的不稳定性,对于构建具有具体形状的可用于体内应用的核糖核酸纳米颗粒仍然具有挑战性。在这里,我们报告了 14 种具有特定形状的用于靶向癌症的核糖核酸纳米颗粒的构建。这些核糖核酸纳米颗粒能够抵抗核糖核酸酶的降解,在血清中稳定超过 36 小时,并且在全身注射后在体内稳定。通过应用核糖核酸纳米技术并以这 14 种核糖核酸纳米颗粒为例,我们已经建立了技术,并利用多种原理开发了“工具包”,构建了具有不同形状和角度的核糖核酸结构。phi29 噬菌体马达 pRNA 的结构元件被用于制造二聚体、双胞胎、三聚体、三聚体、四聚体、四聚体、五聚体、六聚体、七聚体和其他更高阶的低聚物,以及通过手牵手、脚对脚和臂对臂相互作用形成的分支多样结构。这些新型核糖核酸纳米结构具有丰富的功能,可用于纳米技术和医学的众多应用。研究发现,所有包含的功能模块,如 siRNA、核酶、适体和其他功能模块,在纳米颗粒内都能正确折叠并独立发挥功能。所有功能的整合是在核糖核酸纳米颗粒组装之前完成的,但不是之后完成的,从而确保了均一治疗性纳米颗粒的生产。更重要的是,在全身注射后,这些核糖核酸纳米颗粒在体内专门靶向癌症,而不会在正常器官和组织中积累。这些发现为癌症靶向治疗开辟了新的领域。源于一种生物核糖核酸分子的结构和功能的多功能性和多样性暗示了核糖核酸纳米技术领域中蕴藏着巨大的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索