Suppr超能文献

用 18F 标记的二聚体 RGD 肽对肿瘤中整合素 αvβ3 的表达进行成像。

Imaging integrin alpha-v-beta-3 expression in tumors with an 18F-labeled dimeric RGD peptide.

机构信息

Department of Biochemistry, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands.

出版信息

Contrast Media Mol Imaging. 2013 May-Jun;8(3):238-45. doi: 10.1002/cmmi.1523.

Abstract

Integrin αv β3 receptors are expressed on activated endothelial cells during neovascularization to maintain tumor growth. Many radiolabeled probes utilize the tight and specific association between the arginine-glycine-aspartatic acid (RGD) peptide and integrin αv β3 , but one main obstacle for any clinical application of these probes is the laborious multistep radiosynthesis of (18)F. In this study, the dimeric RGD peptide, E-[c(RGDfK)]2, was conjugated with NODAGA and radiolabeled with (18)F in a simple one-pot process with a radiolabeling yield of 20%, the whole process lasting only 45 min. NODAGA-E-[c(RGDfK)]2 labeled with (18)F at a specific activity of 1.8 MBq nmol(-1) and a radiochemical purity of 100% could be achieved. The logP value of (18)F-labeled NODAGA-E-[c(RGDfK)]2 was -4.26 ± 0.02. In biodistribution studies, (18)F-NODAGA-E-[c(RGDfK)]2 cleared rapidly from the blood with 0.03 ± 0.01 percentage injected dose per gram (%ID g(-1)) in the blood at 2 h p.i., mainly via the kidneys, and showed good in vivo stability. Tumor uptake of (18)F-NODAGA-E-[c(RGDfK)]2 (3.44 ± 0.20 %ID g(-1), 2 h p.i.) was significantly lower than that of reference compounds (68) Ga-labeled NODAGA-E-[c(RGDfK)]2 (6.26 ± 0.76 %ID g(-1) ; p <0.001) and (111) In-labeled NODAGA-E-[c(RGDfK)]2 (4.99 ± 0.64 %ID g(-1) ; p < 0.01). Co-injection of an excess of unlabeled NODAGA-E-[c(RGDfK)]2 along with (18)F-NODAGA-E-[c(RGDfK)]2 resulted in significantly reduced radioactivity concentrations in the tumor (0.85 ± 0.13 %ID g(-1)). The αv β3 integrin-expressing SK-RC-52 tumor could be successfully visualized by microPET with (18)F-labeled NODAGA-E-[c(RGDfK)]2 . In conclusion, NODAGA-E-[c(RGDfK)]2 could be labeled rapidly with (18)F using a direct aqueous, one-pot method and it accumulated specifically in αv β3 integrin-expressing SK-RC-52 tumors, allowing for visualization by microPET.

摘要

整合素 αv β3 受体在血管生成过程中表达于活化的内皮细胞上,以维持肿瘤生长。许多放射性标记探针利用精氨酸-甘氨酸-天冬氨酸(RGD)肽与整合素 αv β3 之间的紧密和特异性结合,但这些探针临床应用的一个主要障碍是(18)F 的繁琐多步放射合成。在这项研究中,二聚 RGD 肽 E-[c(RGDfK)]2 与 NODAGA 缀合,并以简单的一锅法用(18)F 标记,标记产率为 20%,整个过程仅需 45 分钟。可获得放射性标记物 NODAGA-E-[c(RGDfK)]2 的比活度为 1.8MBq nmol-1 和放射化学纯度为 100%。(18)F 标记的 NODAGA-E-[c(RGDfK)]2 的 logP 值为-4.26±0.02。在生物分布研究中,(18)F-NODAGA-E-[c(RGDfK)]2 在血液中的清除速度很快,在 2 h 时每克组织注射剂量(%ID g-1)的血液中为 0.03±0.01%,主要通过肾脏排泄,表现出良好的体内稳定性。(18)F-NODAGA-E-[c(RGDfK)]2 的肿瘤摄取率(2 h 时为 3.44±0.20%ID g-1)明显低于参考化合物(68)Ga 标记的 NODAGA-E-[c(RGDfK)]2(6.26±0.76%ID g-1;p<0.001)和(111)In 标记的 NODAGA-E-[c(RGDfK)]2(4.99±0.64%ID g-1;p<0.01)。(18)F-NODAGA-E-[c(RGDfK)]2 与过量未标记的 NODAGA-E-[c(RGDfK)]2 共同注射会导致肿瘤中放射性浓度显著降低(0.85±0.13%ID g-1)。SK-RC-52 肿瘤中表达的 αv β3 整合素可以用(18)F 标记的 NODAGA-E-[c(RGDfK)]2 成功进行 microPET 可视化。总之,NODAGA-E-[c(RGDfK)]2 可以通过直接的水相一锅法快速用(18)F 标记,并且特异性地积聚在表达 αv β3 整合素的 SK-RC-52 肿瘤中,允许用 microPET 进行可视化。

相似文献

1
Imaging integrin alpha-v-beta-3 expression in tumors with an 18F-labeled dimeric RGD peptide.
Contrast Media Mol Imaging. 2013 May-Jun;8(3):238-45. doi: 10.1002/cmmi.1523.
4
Effects of linker variation on the in vitro and in vivo characteristics of an 111In-labeled RGD peptide.
Nucl Med Biol. 2007 Jan;34(1):29-35. doi: 10.1016/j.nucmedbio.2006.10.006.
5
Improved targeting of the alpha(v)beta (3) integrin by multimerisation of RGD peptides.
Eur J Nucl Med Mol Imaging. 2007 Feb;34(2):267-73. doi: 10.1007/s00259-006-0180-9. Epub 2006 Aug 15.
6
MicroPET imaging of integrin αvβ3 expressing tumors using 89Zr-RGD peptides.
Mol Imaging Biol. 2011 Dec;13(6):1224-33. doi: 10.1007/s11307-010-0458-y.
8
18F-labeled mini-PEG spacered RGD dimer (18F-FPRGD2): synthesis and microPET imaging of alphavbeta3 integrin expression.
Eur J Nucl Med Mol Imaging. 2007 Nov;34(11):1823-1831. doi: 10.1007/s00259-007-0427-0. Epub 2007 May 5.
10
(68)Ga-labeled multimeric RGD peptides for microPET imaging of integrin alpha(v)beta (3) expression.
Eur J Nucl Med Mol Imaging. 2008 Jun;35(6):1100-8. doi: 10.1007/s00259-007-0692-y. Epub 2008 Jan 19.

引用本文的文献

1
PET tracers in glioblastoma: Toward neurotheranostics as an individualized medicine approach.
Front Nucl Med. 2023 Feb 27;3:1103262. doi: 10.3389/fnume.2023.1103262. eCollection 2023.
2
The aluminium-[F]fluoride revolution: simple radiochemistry with a big impact for radiolabelled biomolecules.
EJNMMI Radiopharm Chem. 2021 Aug 26;6(1):30. doi: 10.1186/s41181-021-00141-0.
4
Cell penetrating peptides in preclinical and clinical cancer diagnosis and therapy.
Oncotarget. 2018 Dec 14;9(98):37252-37267. doi: 10.18632/oncotarget.26442.
5
Pharmacokinetics of protein and peptide conjugates.
Drug Metab Pharmacokinet. 2019 Feb;34(1):42-54. doi: 10.1016/j.dmpk.2018.11.001. Epub 2018 Nov 22.
6
Optical imaging detection of preclinical models of gut tumors through the expression of integrin αVβ3.
Oncotarget. 2018 Jul 31;9(59):31380-31396. doi: 10.18632/oncotarget.25826.
7
Prospective of Ga Radionuclide Contribution to the Development of Imaging Agents for Infection and Inflammation.
Contrast Media Mol Imaging. 2018 Jan 4;2018:9713691. doi: 10.1155/2018/9713691. eCollection 2018.
8
F-AlF Labeled Peptide and Protein Conjugates as Positron Emission Tomography Imaging Pharmaceuticals.
Bioconjug Chem. 2018 Apr 18;29(4):953-975. doi: 10.1021/acs.bioconjchem.7b00817. Epub 2018 Mar 9.

本文引用的文献

1
PET imaging of angiogenesis after myocardial infarction/reperfusion using a one-step labeled integrin-targeted tracer 18F-AlF-NOTA-PRGD2.
Eur J Nucl Med Mol Imaging. 2012 Apr;39(4):683-92. doi: 10.1007/s00259-011-2052-1. Epub 2012 Jan 25.
2
Comparison study of [18F]FAl-NOTA-PRGD2, [18F]FPPRGD2, and [68Ga]Ga-NOTA-PRGD2 for PET imaging of U87MG tumors in mice.
Bioconjug Chem. 2011 Dec 21;22(12):2415-22. doi: 10.1021/bc200197h. Epub 2011 Nov 3.
3
Optimized labeling of NOTA-conjugated octreotide with F-18.
Tumour Biol. 2012 Apr;33(2):427-34. doi: 10.1007/s13277-011-0250-x. Epub 2011 Oct 19.
4
High-yielding aqueous 18F-labeling of peptides via Al18F chelation.
Bioconjug Chem. 2011 Sep 21;22(9):1793-803. doi: 10.1021/bc200175c. Epub 2011 Aug 9.
5
One-step radiosynthesis of ¹⁸F-AlF-NOTA-RGD₂ for tumor angiogenesis PET imaging.
Eur J Nucl Med Mol Imaging. 2011 Sep;38(9):1732-41. doi: 10.1007/s00259-011-1847-4. Epub 2011 May 27.
6
[68Ga]NODAGA-RGD for imaging αvβ3 integrin expression.
Eur J Nucl Med Mol Imaging. 2011 Jul;38(7):1303-12. doi: 10.1007/s00259-011-1778-0. Epub 2011 Apr 13.
7
Triaza-based amphiphilic chelators: synthetic route, in vitro characterization and in vivo studies of their Ga(III) and Al(III) chelates.
J Inorg Biochem. 2010 Oct;104(10):1051-62. doi: 10.1016/j.jinorgbio.2010.06.002. Epub 2010 Jul 3.
8
Improved 18F labeling of peptides with a fluoride-aluminum-chelate complex.
Bioconjug Chem. 2010 Jul 21;21(7):1331-40. doi: 10.1021/bc100137x.
9
A novel facile method of labeling octreotide with (18)F-fluorine.
J Nucl Med. 2010 Mar;51(3):454-61. doi: 10.2967/jnumed.109.066902. Epub 2010 Feb 11.
10
A novel method of 18F radiolabeling for PET.
J Nucl Med. 2009 Jun;50(6):991-8. doi: 10.2967/jnumed.108.060418. Epub 2009 May 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验