WestCHEM, School of Chemistry, The University of Glasgow, University Avenue, Glasgow G12 8QQ, UK.
Nat Chem. 2013 May;5(5):403-9. doi: 10.1038/nchem.1621. Epub 2013 Apr 14.
Hydrogen is essential to several key industrial processes and could play a major role as an energy carrier in a future 'hydrogen economy'. Although the majority of the world's hydrogen supply currently comes from the reformation of fossil fuels, its generation from water using renewables-generated power could provide a hydrogen source without increasing atmospheric CO₂ levels. Conventional water electrolysis produces H₂ and O₂ simultaneously, such that these gases must be generated in separate spaces to prevent their mixing. Herein, using the polyoxometalate H₃PMo₁₂O₄₀, we introduce the concept of the electron-coupled-proton buffer (ECPB), whereby O₂ and H₂ can be produced at separate times during water electrolysis. This could have advantages in preventing gas mixing in the headspaces of high-pressure electrolysis cells, with implications for safety and electrolyser degradation. Furthermore, we demonstrate that temporally separated O₂ and H₂ production allows greater flexibility regarding the membranes and electrodes that can be used in water-splitting cells.
氢气对于一些关键的工业过程至关重要,并且可能在未来的“氢能经济”中作为能源载体发挥主要作用。虽然目前世界上大部分的氢气供应来自于化石燃料的重整,但利用可再生能源产生的电力从水中制取氢气可以提供一种不会增加大气 CO₂水平的氢气来源。传统的水电解同时产生 H₂和 O₂,因此必须在不同的空间中产生这些气体,以防止它们混合。在此,我们使用多金属氧酸盐 H₃PMo₁₂O₄₀,引入了电子耦合质子缓冲(ECPB)的概念,通过该概念可以在水电解过程中在不同的时间产生 O₂和 H₂。这在防止高压电解槽的气相空间中气体混合方面可能具有优势,这对安全性和电解槽降解具有影响。此外,我们证明了 O₂和 H₂的时间分离生产允许在用于水分解电池的膜和电极方面具有更大的灵活性。