Department of Electrical Engineering, University of Missouri, Columbia, MO, USA.
Nanotechnology. 2013 May 24;24(20):205602. doi: 10.1088/0957-4484/24/20/205602. Epub 2013 Apr 23.
This paper describes a tilted-target RF magnetron sputter deposition system to grow nanoparticles in a controlled way. With detailed characterization of ultra-high density (up to 1.1 × 10¹³ cm⁻²) and ultra-small size Pt nanoparticles (0.5-2 nm), it explains their growth and crystalline properties on amorphous Al₂O₃ thin films. It is shown that Pt nanoparticle size and number density can be precisely engineered by varying selected experimental parameters such as target angle, sputtering power and time of deposition to control the energy of the metal atoms in the deposition flux. Based on rate equation modelling of nanoparticle growth, three distinct growth regimes, namely nucleation dependent, coalescence dependent and agglomeration dependent regimes, were observed. The correlation between different nanoparticle growth regimes and the consequent crystal structure transformation, non-crystalline clusters → single crystalline nanoparticles → polycrystalline islands, is also discussed.
本文描述了一种倾斜靶射频磁控溅射沉积系统,可用于以可控的方式生长纳米粒子。通过对超高密度(高达 1.1×10¹³cm⁻²)和超小尺寸 Pt 纳米粒子(0.5-2nm)的详细特性分析,解释了它们在非晶态 Al₂O₃ 薄膜上的生长和晶体特性。结果表明,通过改变目标角度、溅射功率和沉积时间等选定的实验参数,可以精确控制沉积通量中金属原子的能量,从而精确控制 Pt 纳米粒子的尺寸和数密度。基于纳米粒子生长的速率方程模型,观察到了三个不同的生长区域,分别是形核依赖区、聚结依赖区和团聚依赖区。还讨论了不同纳米粒子生长区域之间的相关性以及由此产生的晶体结构转变,无定形团簇→单晶纳米粒子→多晶岛。