Suppr超能文献

通过调节射频磁控溅射等离子体的能量,在室温下生长晶体羟基磷灰石薄膜。

Growth of crystalline hydroxyapatite thin films at room temperature by tuning the energy of the RF-magnetron sputtering plasma.

机构信息

Department of Applied Physics, Brazilian Center for Physics Research , Urca, Rio de Janeiro 22290-180, Brazil.

出版信息

ACS Appl Mater Interfaces. 2013 Oct 9;5(19):9435-45. doi: 10.1021/am4020007. Epub 2013 Sep 23.

Abstract

Right angle radio frequency magnetron sputtering technique (RAMS) was redesigned to favor the production of high-quality hydroxyapatite (HA) thin coatings for biomedical applications. Stoichiometric HA films with controlled crystallinity, thickness varying from 254 to 540 nm, crystallite mean size of 73 nm, and RMS roughness of 1.7 ± 0.9 nm, were obtained at room temperature by tuning the thermodynamic properties of the plasma sheath energy. The plasma energies were adjusted by using a suitable high magnetic field confinement of 143 mT (1430 G) and a substrate floating potential of 2 V at the substrate-to-magnetron distance of Z = 10 mm and by varying the sputtering geometry, substrate-to-magnetron distance from Z = 5 mm to Z = 18 mm, forwarded RF power and reactive gas pressure. Measurements that were taken with a Langmuir probe showed that the adjusted RAMS geometry generated a plasma with an adequate effective temperature of Teff ≈ 11.8 eV and electron density of 2.0 × 10(15) m(-3) to nucleate nanoclusters and to further crystallize the nanodomains of stoichiometric HA. The deposition mechanism in the RAMS geometry was described by the formation of building units of amorphous calcium phosphate clusters (ACP), the conversion into HA nanodomains and the crystallization of the grain domains with a preferential orientation along the HA [002] direction.

摘要

直角射频磁控溅射技术(RAMS)经过重新设计,有利于生产用于生物医学应用的高质量羟基磷灰石(HA)薄膜。通过调整等离子体鞘层能量的热力学性质,在室温下获得了具有控制结晶度的化学计量 HA 薄膜,厚度从 254nm 到 540nm 不等,晶粒平均尺寸为 73nm,均方根粗糙度为 1.7±0.9nm。通过使用合适的磁场约束(143mT,即 1430G)和基底浮动电位 2V,在基底到磁控管距离 Z=10mm 时,调整等离子体能量,通过改变溅射几何形状、基底到磁控管距离 Z=5mm 到 Z=18mm、正向射频功率和反应气体压力来实现。通过 Langmuir 探针进行的测量表明,调整后的 RAMS 几何形状产生了一个具有足够有效温度 Teff≈11.8eV 和电子密度 2.0×10(15)m(-3)的等离子体,以成核纳米团簇并进一步使化学计量 HA 的纳米畴结晶。RAMS 几何形状中的沉积机制通过无定形磷酸钙簇(ACP)的形成单元、转化为 HA 纳米畴以及沿着 HA[002]方向优先取向的晶粒域的结晶来描述。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验