Suppr超能文献

基于聚多巴胺的表面修饰用于开发肿瘤周围激活的纳米颗粒。

Polydopamine-based surface modification for the development of peritumorally activatable nanoparticles.

机构信息

Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, Indiana 47907, USA.

出版信息

Pharm Res. 2013 Aug;30(8):1956-67. doi: 10.1007/s11095-013-1039-y. Epub 2013 Apr 23.

Abstract

PURPOSE

To create poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs), where a drug-encapsulating NP core is covered with polyethylene glycol (PEG) in a normal condition but exposes a cell-interactive TAT-modified surface in an environment rich in matrix metalloproteinases (MMPs).

METHODS

PLGA NPs were modified with TAT peptide (PLGA-pDA-TAT NPs) or dual-modified with TAT peptide and a conjugate of PEG and MMP-substrate peptide (peritumorally activatable NPs, PANPs) via dopamine polymerization. Cellular uptake of fluorescently labeled NPs was observed with or without a pre-treatment of MMP-2 by confocal microscopy and flow cytometry. NPs loaded with paclitaxel (PTX) were tested against SKOV-3 ovarian cancer cells to evaluate the contribution of surface modification to cellular delivery of PTX.

RESULTS

While the size and morphology did not significantly change due to the modification, NPs modified with dopamine polymerization were recognized by their dark color. TAT-containing NPs (PLGA-pDA-TAT NPs and PANPs) showed changes in surface charge, indicative of effective conjugation of TAT peptide on the surface. PLGA-pDA-TAT NPs and MMP-2-pre-treated PANPs showed relatively good cellular uptake compared to PLGA NPs, MMP-2-non-treated PANPs, and NPs with non-cleavable PEG. After 3 h treatment with cells, PTX loaded in cell-interactive NPs showed greater toxicity than non-interactive ones as the former could enter cells during the incubation period. However, due to the initial burst drug release, the difference was not as clear as microscopic observation.

CONCLUSIONS

PEGylated polymeric NPs that could expose cell-interactive surface in response to MMP-2 were successfully created by dual modification of PLGA NPs using dopamine polymerization.

摘要

目的

制备聚(乳酸-共-乙醇酸)(PLGA)纳米颗粒(NPs),其中药物包封的 NP 核在正常条件下被聚乙二醇(PEG)覆盖,但在富含基质金属蛋白酶(MMPs)的环境中暴露细胞相互作用的 TAT 修饰表面。

方法

通过多巴胺聚合将 TAT 肽(PLGA-pDA-TAT NPs)或 TAT 肽和 PEG 与 MMP 底物肽缀合物(肿瘤周围可激活 NPs,PANPs)双重修饰 PLGA NPs。通过共聚焦显微镜和流式细胞术观察用或不用 MMP-2 预处理的荧光标记 NPs 的细胞摄取。用紫杉醇(PTX)负载的 NPs 测试 against SKOV-3 卵巢癌细胞,以评估表面修饰对 PTX 细胞递释的贡献。

结果

虽然由于修饰大小和形态没有明显变化,但由于多巴胺聚合而修饰的 NPs 呈现出深色。含有 TAT 的 NPs(PLGA-pDA-TAT NPs 和 PANPs)表面电荷发生变化,表明 TAT 肽有效接枝到表面。与 PLGA NPs、未经 MMP-2 处理的 PANPs 和不可裂解的 PEG 相比,PLGA-pDA-TAT NPs 和 MMP-2 预处理的 PANPs 显示出相对较好的细胞摄取。与非相互作用的 NPs 相比,在细胞内孵育期间能够进入细胞的细胞相互作用的 NPs 负载的 PTX 显示出更大的毒性。然而,由于初始突释药物释放,差异不如显微镜观察那么明显。

结论

通过使用多巴胺聚合对 PLGA NPs 进行双重修饰,成功制备了能够响应 MMP-2 暴露细胞相互作用表面的 PEG 化聚合物 NPs。

相似文献

1
Polydopamine-based surface modification for the development of peritumorally activatable nanoparticles.
Pharm Res. 2013 Aug;30(8):1956-67. doi: 10.1007/s11095-013-1039-y. Epub 2013 Apr 23.
4
Beyond the imaging: limitations of cellular uptake study in the evaluation of nanoparticles.
J Control Release. 2012 Dec 10;164(2):170-6. doi: 10.1016/j.jconrel.2012.04.042. Epub 2012 May 5.
8
Stimuli-responsive magnetic silica-poly-lactic-co-glycolic acid hybrid nanoparticles for targeted cancer chemo-immunotherapy.
Drug Deliv Transl Res. 2024 Oct;14(10):2712-2726. doi: 10.1007/s13346-024-01521-0. Epub 2024 Feb 12.
9
New approach to treating spinal cord injury using PEG-TAT-modified, cyclosporine-A-loaded PLGA/polymeric liposomes.
J Drug Target. 2017 Jan;25(1):75-82. doi: 10.1080/1061186X.2016.1191082. Epub 2016 Jun 2.
10
Mesenchymal stem cells loaded with paclitaxel-poly(lactic--glycolic acid) nanoparticles for glioma-targeting therapy.
Int J Nanomedicine. 2018 Sep 7;13:5231-5248. doi: 10.2147/IJN.S167142. eCollection 2018.

引用本文的文献

1
Preparation of surface-modified PLGA nanoparticles containing carbon quantum dots: insights from C6 cell line assays.
Nanomedicine (Lond). 2025 Jun;20(12):1403-1416. doi: 10.1080/17435889.2025.2504322. Epub 2025 May 20.
2
Controlled Quercetin Release by Fluorescent Mesoporous Nanocarriers for Effective Anti-Adipogenesis.
Int J Nanomedicine. 2024 Jun 8;19:5441-5458. doi: 10.2147/IJN.S463765. eCollection 2024.
4
Emerging nanobiotechnology for precise theranostics of hepatocellular carcinoma.
J Nanobiotechnology. 2022 Sep 29;20(1):427. doi: 10.1186/s12951-022-01615-2.
5
Cytotoxicity of targeted PLGA nanoparticles: a systematic review.
RSC Adv. 2021 Mar 3;11(16):9433-9449. doi: 10.1039/d1ra00074h. eCollection 2021 Mar 1.
8
9
Gene-Loaded Nanoparticle-Coated Sutures Provide Effective Gene Delivery to Enhance Tendon Healing.
Mol Ther. 2019 Sep 4;27(9):1534-1546. doi: 10.1016/j.ymthe.2019.05.024. Epub 2019 Jun 7.

本文引用的文献

1
A novel technique for in situ aggregation of Gluconobacter oxydans using bio-adhesive magnetic nanoparticles.
Biotechnol Bioeng. 2012 Dec;109(12):2970-7. doi: 10.1002/bit.24582. Epub 2012 Jul 12.
2
Beyond the imaging: limitations of cellular uptake study in the evaluation of nanoparticles.
J Control Release. 2012 Dec 10;164(2):170-6. doi: 10.1016/j.jconrel.2012.04.042. Epub 2012 May 5.
4
A self-assembled polydopamine film on the surface of magnetic nanoparticles for specific capture of protein.
Nanoscale. 2012 May 21;4(10):3141-7. doi: 10.1039/c2nr30316g. Epub 2012 Apr 25.
5
Low molecular-weight chitosan as a pH-sensitive stealth coating for tumor-specific drug delivery.
Mol Pharm. 2012 May 7;9(5):1262-70. doi: 10.1021/mp2005615. Epub 2012 Apr 20.
6
Poly(dopamine) coating of scaffolds for articular cartilage tissue engineering.
Acta Biomater. 2011 Dec;7(12):4187-94. doi: 10.1016/j.actbio.2011.07.024. Epub 2011 Aug 3.
7
A biofunctionalization scheme for neural interfaces using polydopamine polymer.
Biomaterials. 2011 Sep;32(27):6374-80. doi: 10.1016/j.biomaterials.2011.05.028. Epub 2011 Jun 8.
8
Mussel-inspired polydopamine-treated polyethylene separators for high-power li-ion batteries.
Adv Mater. 2011 Jul 19;23(27):3066-70. doi: 10.1002/adma.201100303. Epub 2011 May 24.
9
Systemic delivery of siRNA to tumors using a lipid nanoparticle containing a tumor-specific cleavable PEG-lipid.
Biomaterials. 2011 Jun;32(18):4306-16. doi: 10.1016/j.biomaterials.2011.02.045. Epub 2011 Mar 22.
10
Receptor-targeted nanocarriers for therapeutic delivery to cancer.
Mol Membr Biol. 2010 Oct;27(7):286-98. doi: 10.3109/09687688.2010.521200.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验