文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

载紫杉醇/吲哚菁绿的叶酸受体靶向激光激活聚乳酸-乙醇酸纳米粒用于光声/超声成像及化疗/光热治疗。

Folate-receptor-targeted laser-activable poly(lactide--glycolic acid) nanoparticles loaded with paclitaxel/indocyanine green for photoacoustic/ultrasound imaging and chemo/photothermal therapy.

机构信息

Ultrasound Department, Second Affiliated Hospital, Chongqing Medical University,

Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, China,

出版信息

Int J Nanomedicine. 2018 Sep 6;13:5139-5158. doi: 10.2147/IJN.S167043. eCollection 2018.


DOI:10.2147/IJN.S167043
PMID:30233177
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6135220/
Abstract

BACKGROUND: Cancer is one of the most serious threats to human health. Precision medicine is an innovative approach to treatment, as part of which theranostic nanomedicine has been studied extensively. However, the required biocompatibility and substantial cost for the approval of nanomedicines hinder their clinical translation. PURPOSE: We designed a novel type of theranostic nanoparticle (NP) folate-receptor-targeted laser-activatable poly(lactide--glycolic acid) (PLGA) NPs loaded with paclitaxel (Ptx)/indo-cyanine green (ICG)-folic acid-polyethylene glycol (PEG)-PLGA-Ptx@ICG-perfluorohexane (Pfh)- using safe and approved materials and drugs, which would facilitate clinical translation. With laser irradiation, highly efficient photothermal therapy can be achieved. Additionally, targeted NPs can be activated by near-infrared laser irradiation at a specific region, which leads to the sharp release of Ptx at areas of high folate-receptor expression and ensures a higher Ptx concentration within the tumor region, thereby leading to chemo/photothermal synergistic antitumor efficacy. Meanwhile, the NPs can be used as a dual-modality contrast agent for photoacoustic and ultrasound imaging. MATERIALS AND METHODS: FA-PEG-PLGA-Ptx@ICG-Pfh NPs were prepared by sonification method and characterized for physicochemical properties. Cytotoxicity and in vivo biocompatibility were evaluated respectively by CCK8 assay and blood analysis. NPs as dual-modality contrast agents were evaluated by photoacoustic/ultrasound imaging system in vitro and in vivo. In vitro anticancer effect and in vivo anticancer therapy was evaluated by CCK8 assay and MDA-MB231 tumor-bearing mice model. RESULTS: FA-PEG-PLGA-Ptx@ICG-Pfh NPs were in the size of 308±5.82 nm with negative zeta potential and showed excellent photothermal effect. The NPs could be triggered sharp release of Ptx by laser irradiation, and showed the good biocompatibility in vitro and in vivo. Through photoacoustic/ultrasound imaging, the NPs showed an excellent ability as dual-modality contrast agents in vitro and in vivo. FA-PEG-PLGA-Ptx@ICG-Pfh NPs with laser irradiation showed the best anticancer efficacy in vitro and in vivo. CONCLUSION: Such a biocompatible and novel theranostic NP is expected to integrate dual-modality imaging with improved therapeutic efficacy and provide a promising paradigm for cancer therapy.

摘要

背景:癌症是对人类健康最严重的威胁之一。精准医学是一种创新的治疗方法,其中治疗诊断纳米医学得到了广泛研究。然而,纳米药物所需的生物相容性和大量成本阻碍了它们的临床转化。

目的:我们设计了一种新型的治疗诊断纳米粒子(NP),叶酸受体靶向激光激活聚乳酸-乙醇酸(PLGA)纳米载紫杉醇(Ptx)/吲哚菁绿(ICG)-叶酸-聚乙二醇(PEG)-PLGA-Ptx@ICG-全氟己烷(Pfh),使用安全且经过批准的材料和药物,这将有助于临床转化。激光照射后,可实现高效的光热治疗。此外,靶向 NP 可通过近红外激光在特定区域激活,导致在高叶酸受体表达区域迅速释放 Ptx,并确保肿瘤区域内的 Ptx 浓度更高,从而实现化疗/光热协同抗肿瘤疗效。同时,NP 可用作光声和超声成像的双模态对比剂。

材料和方法:FA-PEG-PLGA-Ptx@ICG-Pfh NPs 通过超声法制备,并对其理化性质进行了表征。通过 CCK8 测定法和血液分析分别评估细胞毒性和体内生物相容性。通过体外和体内光声/超声成像系统评估 NPs 作为双模态对比剂的性能。通过 CCK8 测定法和 MDA-MB231 荷瘤小鼠模型评估体外和体内抗肿瘤效果和抗肿瘤治疗。

结果:FA-PEG-PLGA-Ptx@ICG-Pfh NPs 的粒径为 308±5.82nm,带负的 Zeta 电位,具有优异的光热效应。NP 可在激光照射下触发 Ptx 的急剧释放,并在体外和体内表现出良好的生物相容性。通过光声/超声成像,NP 显示出优异的体外和体内双模态对比剂能力。FA-PEG-PLGA-Ptx@ICG-Pfh NPs 联合激光照射显示出最佳的体外和体内抗肿瘤疗效。

结论:这种生物相容性的新型治疗诊断 NP 有望将双模态成像与提高治疗效果相结合,为癌症治疗提供一种有前途的范例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db59/6135220/403246222e5b/ijn-13-5139Fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db59/6135220/730bbe07a2cd/ijn-13-5139Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db59/6135220/1d3d04f54a54/ijn-13-5139Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db59/6135220/5c9168020b5f/ijn-13-5139Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db59/6135220/4a7f48d8280a/ijn-13-5139Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db59/6135220/fe7352393240/ijn-13-5139Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db59/6135220/403246222e5b/ijn-13-5139Fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db59/6135220/730bbe07a2cd/ijn-13-5139Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db59/6135220/1d3d04f54a54/ijn-13-5139Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db59/6135220/5c9168020b5f/ijn-13-5139Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db59/6135220/4a7f48d8280a/ijn-13-5139Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db59/6135220/fe7352393240/ijn-13-5139Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db59/6135220/403246222e5b/ijn-13-5139Fig6.jpg

相似文献

[1]
Folate-receptor-targeted laser-activable poly(lactide--glycolic acid) nanoparticles loaded with paclitaxel/indocyanine green for photoacoustic/ultrasound imaging and chemo/photothermal therapy.

Int J Nanomedicine. 2018-9-6

[2]
A light-controllable specific drug delivery nanoplatform for targeted bimodal imaging-guided photothermal/chemo synergistic cancer therapy.

Acta Biomater. 2018-9-19

[3]
NIR-Light-Triggered Anticancer Strategy for Dual-Modality Imaging-Guided Combination Therapy via a Bioinspired Hybrid PLGA Nanoplatform.

Mol Pharm. 2019-2-22

[4]
Chemotherapeutic drug-photothermal agent co-self-assembling nanoparticles for near-infrared fluorescence and photoacoustic dual-modal imaging-guided chemo-photothermal synergistic therapy.

J Control Release. 2017-5-10

[5]
Development of PLGA-lipid nanoparticles with covalently conjugated indocyanine green as a versatile nanoplatform for tumor-targeted imaging and drug delivery.

Int J Nanomedicine. 2016-11-4

[6]
Melanin-loaded biocompatible photosensitive nanoparticles for controlled drug release in combined photothermal-chemotherapy guided by photoacoustic/ultrasound dual-modality imaging.

Biomater Sci. 2019-9-2

[7]
Folate receptor-targeted theranostic IrS nanoparticles for multimodal imaging-guided combined chemo-photothermal therapy.

Nanoscale. 2018-11-22

[8]
Mesenchymal stem cells loaded with paclitaxel-poly(lactic--glycolic acid) nanoparticles for glioma-targeting therapy.

Int J Nanomedicine. 2018-9-7

[9]
Magnetic targeting of paclitaxel-loaded poly(lactic--glycolic acid)-based nanoparticles for the treatment of glioblastoma.

Int J Nanomedicine. 2018-8-8

[10]
Co-delivery of cisplatin and paclitaxel by folic acid conjugated amphiphilic PEG-PLGA copolymer nanoparticles for the treatment of non-small lung cancer.

Oncotarget. 2015-12-8

引用本文的文献

[1]
Emerging Trends in the Application of Nanosuspension-Based Biomaterials for Anticancer Drug Delivery.

Int J Nanomedicine. 2025-7-1

[2]
Bioinformatics-Driven Engineering of ROS-Responsive Dextran--Poly(propylene sulfide) Nanoparticles Functionalized with Folic Acid for Targeted Prostate Cancer Therapy.

ACS Omega. 2025-6-4

[3]
Simultaneous co-delivery of Ginsenoside Rg3 and imiquimod from PLGA nanoparticles for effective breast cancer immunotherapy.

iScience. 2025-3-22

[4]
Sono-Piezo Dynamic Therapy: Utilizing Piezoelectric Materials as Sonosensitizer for Sonodynamic Therapy.

Adv Sci (Weinh). 2025-3

[5]
Ultrasound Sonosensitizers for Tumor Sonodynamic Therapy and Imaging: A New Direction with Clinical Translation.

Molecules. 2023-9-7

[6]
Interpreting the Therapeutic Efficiency of Multifunctional Hybrid Nanostructure against Glioblastoma.

ACS Omega. 2023-3-22

[7]
Photoacoustic signal enhancement in dual-contrast gastrin-releasing peptide receptor-targeted nanobubbles.

Front Bioeng Biotechnol. 2023-1-17

[8]
Drug-loaded PEG-PLGA nanoparticles for cancer treatment.

Front Pharmacol. 2022-8-19

[9]
Radionuclide I-labeled albumin-indocyanine green nanoparticles for synergistic combined radio-photothermal therapy of anaplastic thyroid cancer.

Front Oncol. 2022-7-25

[10]
Dual-Target Multifunctional Superparamagnetic Cationic Nanoliposomes for Multimodal Imaging-Guided Synergistic Photothermal/Photodynamic Therapy of Retinoblastoma.

Int J Nanomedicine. 2022

本文引用的文献

[1]
Multifunctional nanoparticles as somatostatin receptor-targeting delivery system of polyaniline and methotrexate for combined chemo-photothermal therapy.

Acta Biomater. 2017-12-30

[2]
Ultrasound-based triggered drug delivery to tumors.

Drug Deliv Transl Res. 2018-2

[3]
Nanocolloidosomes with Selective Drug Release for Active Tumor-Targeted Imaging-Guided Photothermal/Chemo Combination Therapy.

ACS Appl Mater Interfaces. 2017-11-20

[4]
Contrast-enhanced ultrasound of malignant liver lesions.

Abdom Radiol (NY). 2018-4

[5]
Multimodal nanoparticle imaging agents: design and applications.

Philos Trans A Math Phys Eng Sci. 2017-11-28

[6]
Advanced Methods for Radiolabeling Multimodality Nanomedicines for SPECT/MRI and PET/MRI.

J Nucl Med. 2017-10-12

[7]
Bridging Bio-Nano Science and Cancer Nanomedicine.

ACS Nano. 2017-9-19

[8]
Bubble-generating nano-lipid carriers for ultrasound/CT imaging-guided efficient tumor therapy.

Int J Pharm. 2017-8-10

[9]
Mussel-inspired PLGA/polydopamine core-shell nanoparticle for light induced cancer thermochemotherapy.

Acta Biomater. 2017-9-1

[10]
Sequentially Responsive Shell-Stacked Nanoparticles for Deep Penetration into Solid Tumors.

Adv Mater. 2017-6-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索