Suppr超能文献

使用偏态椭圆分布对前瞻性队列研究的多元混合模型进行贝叶斯分析。

Bayesian analysis of multivariate mixed models for a prospective cohort study using skew-elliptical distributions.

作者信息

Kazemi Iraj, Mahdiyeh Zahra, Mansourian Marjan, Park Jongbae J

机构信息

Department of Statistics, College of Science, University of Isfahan, Iran.

出版信息

Biom J. 2013 Jul;55(4):495-508. doi: 10.1002/bimj.201100208. Epub 2013 Apr 23.

Abstract

Classical multivariate mixed models that acknowledge the correlation of patients through the incorporation of normal error terms are widely used in cohort studies. Violation of the normality assumption can make the statistical inference vague. In this paper, we propose a Bayesian parametric approach by relaxing this assumption and substituting some flexible distributions in fitting multivariate mixed models. This strategy allows for the skewness and the heavy tails of error-term distributions and thus makes inferences robust to the violation. This approach uses flexible skew-elliptical distributions, including skewed, fat, or thin-tailed distributions, and imposes the normal model as a special case. We use real data obtained from a prospective cohort study on the low back pain to illustrate the usefulness of our proposed approach.

摘要

通过纳入正态误差项来承认患者相关性的经典多元混合模型在队列研究中被广泛使用。违反正态性假设会使统计推断变得模糊。在本文中,我们通过放宽这一假设并在拟合多元混合模型时代入一些灵活的分布,提出了一种贝叶斯参数方法。这种策略考虑了误差项分布的偏度和厚尾性,从而使推断对违反假设具有稳健性。该方法使用灵活的偏态椭圆分布,包括偏态、厚尾或薄尾分布,并将正态模型作为一种特殊情况。我们使用从一项关于腰痛的前瞻性队列研究中获得的真实数据来说明我们提出的方法的实用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验