Division of Nutritional Sciences, Graduate Field of Genetics, School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA.
Proc Natl Acad Sci U S A. 2013 May 7;110(19):7772-7. doi: 10.1073/pnas.1218495110. Epub 2013 Apr 22.
Proper placement of epigenetic marks on DNA and histones is fundamental to normal development, and perturbations contribute to a variety of disease states. Combinations of marks act together to control gene expression; therefore, detecting their colocalization is important, but because of technical challenges, such measurements are rarely reported. Instead, measurements of epigenetic marks are typically performed one at a time in a population of cells, and their colocalization is inferred by association. Here, we describe a single-molecule analytical approach that can perform direct detection of multiple epigenetic marks simultaneously and use it to identify mechanisms coordinating placement of three gene silencing marks, trimethylated histone H3 lysine 9, lysine 27 (H3K9me3, H3K27me3), and cytosine methylation (mC), in the normal and cancer genome. We show that H3K9me3 and mC are present together on individual chromatin fragments in mouse embryonic stem cells and that half of the H3K9me3 marks require mC for their placement. In contrast, mC and H3K27me3 coincidence is rare, and in fact, mC antagonizes H3K27me3 in both embryonic stem cells and primary mouse fibroblasts, indicating this antagonism is shared among primary cells. However, upon immortalization or tumorigenic transformation of mouse fibroblasts, mC is required for complete H3K27me3 placement. Importantly, in human promyelocytic cells, H3K27me3 is also dependent on mC. Because aberrant placement of gene silencing marks at tumor suppressor genes contributes to tumor progression, the improper dependency of H3K27me3 by mC in immortalized cells is likely to be fundamental to cancer. Our platform can enable other studies involving coordination of epigenetic marks and leverage efforts to discover disease biomarkers and epigenome-modifying drugs.
DNA 和组蛋白上表观遗传标记的正确定位对正常发育至关重要,而这些标记的扰动会导致多种疾病状态。标记的组合共同作用来控制基因表达;因此,检测它们的共定位很重要,但由于技术挑战,很少有报道这样的测量结果。相反,通常在细胞群体中一次测量一个表观遗传标记,并通过关联推断它们的共定位。在这里,我们描述了一种单分子分析方法,可以同时直接检测多个表观遗传标记,并利用它来识别协调三种基因沉默标记(三甲基化组蛋白 H3 赖氨酸 9、赖氨酸 27 [H3K9me3、H3K27me3]和胞嘧啶甲基化[mC])在正常和癌症基因组中位置的机制。我们表明,在小鼠胚胎干细胞中,H3K9me3 和 mC 同时存在于单个染色质片段上,并且一半的 H3K9me3 标记需要 mC 才能进行定位。相比之下,mC 和 H3K27me3 的一致性很少见,事实上,mC 在胚胎干细胞和原代小鼠成纤维细胞中都拮抗 H3K27me3,表明这种拮抗作用在原代细胞中是共有的。然而,在小鼠成纤维细胞的永生化或致瘤转化过程中,mC 是完全放置 H3K27me3 所必需的。重要的是,在人早幼粒细胞中,H3K27me3 也依赖于 mC。由于肿瘤抑制基因中基因沉默标记的异常定位会导致肿瘤进展,因此 mC 对 H3K27me3 的不当依赖在永生化细胞中可能是癌症的基础。我们的平台可以使其他涉及表观遗传标记协调的研究受益,并利用努力发现疾病生物标志物和表观遗传修饰药物。