Suppr超能文献

基于KeratinoSens体外数据和动力学肽结合预测皮肤致敏剂效力:全局评估与基于结构域的评估

Predicting skin sensitizer potency based on in vitro data from KeratinoSens and kinetic peptide binding: global versus domain-based assessment.

作者信息

Natsch Andreas, Emter Roger, Gfeller Hans, Haupt Tina, Ellis Graham

机构信息

*Bioscience and Analytical Chemistry, Givaudan Schweiz AG, CH-8600 Duebendorf, Switzerland and Regulatory Affairs and Product Safety, Givaudan International SA, CH-1214 Vernier, Switzerland

*Bioscience and Analytical Chemistry, Givaudan Schweiz AG, CH-8600 Duebendorf, Switzerland and Regulatory Affairs and Product Safety, Givaudan International SA, CH-1214 Vernier, Switzerland.

出版信息

Toxicol Sci. 2015 Feb;143(2):319-32. doi: 10.1093/toxsci/kfu229. Epub 2014 Oct 22.

Abstract

Three in vitro methods for the prediction of the skin sensitization hazard have been validated. However, predicting sensitizer potency is a key requirement for risk assessment. Here, we report a database of 312 chemicals tested in the KeratinoSens™ assay and for kinetic peptide binding. These data were used in multiple regression analysis against potency in the local lymph node assay (LLNA). The dataset covers the majority of chemicals from the validation of the LLNA to predict human potency and this subset was analyzed for prediction of human sensitization potency by in vitro data. Global analysis yields a regression of in vitro data to LLNA pEC3 with an R(2) of 60% predicting LLNA EC3 with a mean error of 3.5-fold. The highest weight in the regression has the reaction rate with peptides, followed by Nrf2-induction and cytotoxicity in KeratinoSens™. The correlation of chemicals tested positive in vitro with human data has an R(2) of 49%, which is similar to the correlation between LLNA and human data. Chemicals were then grouped into mechanistic domains based on experimentally observed peptide-adduct formation and predictions from the TIMES SS software. Predictions within these domains with a leave-one-out approach were more accurate, and for several mechanistic domains LLNA EC3 can be predicted with an error of 2- to 3-fold. However, prediction accuracy differs between domains and domain assignment cannot be made for all chemicals. Thus, this comprehensive analysis indicates that combining global and domain models to assess sensitizer potency may be a practical way forward.

摘要

三种预测皮肤致敏危害的体外方法已经得到验证。然而,预测致敏剂的效力是风险评估的关键要求。在此,我们报告了一个包含312种化学品的数据库,这些化学品在KeratinoSens™试验和动力学肽结合试验中进行了测试。这些数据被用于针对局部淋巴结试验(LLNA)中的效力进行多元回归分析。该数据集涵盖了LLNA验证中用于预测人体效力的大多数化学品,并且对这一子集进行了分析,以通过体外数据预测人体致敏效力。全局分析得出体外数据与LLNA pEC3的回归关系,R(2)为60%,预测LLNA EC3时平均误差为3.5倍。回归中权重最高的是与肽的反应速率,其次是KeratinoSens™中的Nrf2诱导和细胞毒性。体外测试呈阳性的化学品与人体数据的相关性R(2)为49%,这与LLNA和人体数据之间的相关性相似。然后根据实验观察到 的肽加合物形成以及TIMES SS软件的预测,将化学品分组到不同机制领域。采用留一法在这些领域内进行的预测更为准确,对于几个机制领域,可以以2至3倍的误差预测LLNA EC3。然而,不同领域的预测准确性有所不同,并且并非所有化学品都能进行领域划分。因此,这一综合分析表明,结合全局模型和领域模型来评估致敏剂效力可能是一条可行的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验