Suppr超能文献

什么时候选择枢纽基因比标准荟萃分析更好?

When is hub gene selection better than standard meta-analysis?

机构信息

Department of Human Genetics, University of California Los Angeles, Los Angeles, California, United States of America.

出版信息

PLoS One. 2013 Apr 17;8(4):e61505. doi: 10.1371/journal.pone.0061505. Print 2013.

Abstract

Since hub nodes have been found to play important roles in many networks, highly connected hub genes are expected to play an important role in biology as well. However, the empirical evidence remains ambiguous. An open question is whether (or when) hub gene selection leads to more meaningful gene lists than a standard statistical analysis based on significance testing when analyzing genomic data sets (e.g., gene expression or DNA methylation data). Here we address this question for the special case when multiple genomic data sets are available. This is of great practical importance since for many research questions multiple data sets are publicly available. In this case, the data analyst can decide between a standard statistical approach (e.g., based on meta-analysis) and a co-expression network analysis approach that selects intramodular hubs in consensus modules. We assess the performance of these two types of approaches according to two criteria. The first criterion evaluates the biological insights gained and is relevant in basic research. The second criterion evaluates the validation success (reproducibility) in independent data sets and often applies in clinical diagnostic or prognostic applications. We compare meta-analysis with consensus network analysis based on weighted correlation network analysis (WGCNA) in three comprehensive and unbiased empirical studies: (1) Finding genes predictive of lung cancer survival, (2) finding methylation markers related to age, and (3) finding mouse genes related to total cholesterol. The results demonstrate that intramodular hub gene status with respect to consensus modules is more useful than a meta-analysis p-value when identifying biologically meaningful gene lists (reflecting criterion 1). However, standard meta-analysis methods perform as good as (if not better than) a consensus network approach in terms of validation success (criterion 2). The article also reports a comparison of meta-analysis techniques applied to gene expression data and presents novel R functions for carrying out consensus network analysis, network based screening, and meta analysis.

摘要

由于枢纽节点在许多网络中发挥着重要作用,因此高度连接的枢纽基因有望在生物学中也发挥重要作用。然而,实证证据仍然存在分歧。一个悬而未决的问题是,在分析基因组数据集(例如基因表达或 DNA 甲基化数据)时,枢纽基因选择是否(或何时)会导致比基于显著性检验的标准统计分析更有意义的基因列表。在这里,我们针对存在多个基因组数据集的特殊情况解决了这个问题。由于对于许多研究问题,多个数据集都是公开可用的,因此这具有重要的实际意义。在这种情况下,数据分析师可以在标准统计方法(例如基于荟萃分析)和共识模块内选择模块内枢纽的共表达网络分析方法之间做出选择。我们根据两个标准评估这两种方法的性能。第一个标准评估获得的生物学见解,这在基础研究中很重要。第二个标准评估在独立数据集上的验证成功(可重复性),通常适用于临床诊断或预后应用。我们在三个全面且无偏的经验研究中比较了荟萃分析和基于加权相关网络分析(WGCNA)的共识网络分析:(1)寻找预测肺癌生存的基因,(2)寻找与年龄相关的甲基化标记,以及(3)寻找与总胆固醇相关的小鼠基因。结果表明,在确定具有生物学意义的基因列表时,相对于共识模块的模块内枢纽基因状态比荟萃分析 p 值更有用(反映标准 1)。但是,在验证成功率(标准 2)方面,标准荟萃分析方法的性能与共识网络方法一样好(如果不比共识网络方法更好的话)。本文还报告了荟萃分析技术在基因表达数据中的应用比较,并介绍了用于进行共识网络分析、基于网络的筛选和荟萃分析的新 R 函数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73a3/3629234/d0039fa832ac/pone.0061505.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验