Suppr超能文献

年龄和细胞骨架成分对压痕依赖性软骨细胞力学性能的影响。

Effect of age and cytoskeletal elements on the indentation-dependent mechanical properties of chondrocytes.

机构信息

The Feinstein Institute for Medical Research, Hofstra North Shore LIJ School of Medicine, Manhasset, New York, United States of America.

出版信息

PLoS One. 2013 Apr 16;8(4):e61651. doi: 10.1371/journal.pone.0061651. Print 2013.

Abstract

Articular cartilage chondrocytes are responsible for the synthesis, maintenance, and turnover of the extracellular matrix, metabolic processes that contribute to the mechanical properties of these cells. Here, we systematically evaluated the effect of age and cytoskeletal disruptors on the mechanical properties of chondrocytes as a function of deformation. We quantified the indentation-dependent mechanical properties of chondrocytes isolated from neonatal (1-day), adult (5-year) and geriatric (12-year) bovine knees using atomic force microscopy (AFM). We also measured the contribution of the actin and intermediate filaments to the indentation-dependent mechanical properties of chondrocytes. By integrating AFM with confocal fluorescent microscopy, we monitored cytoskeletal and biomechanical deformation in transgenic cells (GFP-vimentin and mCherry-actin) under compression. We found that the elastic modulus of chondrocytes in all age groups decreased with increased indentation (15-2000 nm). The elastic modulus of adult chondrocytes was significantly greater than neonatal cells at indentations greater than 500 nm. Viscoelastic moduli (instantaneous and equilibrium) were comparable in all age groups examined; however, the intrinsic viscosity was lower in geriatric chondrocytes than neonatal. Disrupting the actin or the intermediate filament structures altered the mechanical properties of chondrocytes by decreasing the elastic modulus and viscoelastic properties, resulting in a dramatic loss of indentation-dependent response with treatment. Actin and vimentin cytoskeletal structures were monitored using confocal fluorescent microscopy in transgenic cells treated with disruptors, and both treatments had a profound disruptive effect on the actin filaments. Here we show that disrupting the structure of intermediate filaments indirectly altered the configuration of the actin cytoskeleton. These findings underscore the importance of the cytoskeletal elements in the overall mechanical response of chondrocytes, indicating that intermediate filament integrity is key to the non-linear elastic properties of chondrocytes. This study improves our understanding of the mechanical properties of articular cartilage at the single cell level.

摘要

关节软骨细胞负责细胞外基质的合成、维持和更新,这些代谢过程有助于细胞的力学性能。在这里,我们系统地评估了年龄和细胞骨架破坏剂对软骨细胞力学性能的影响,作为变形的函数。我们使用原子力显微镜(AFM)定量分析了从新生(1 天)、成年(5 岁)和老年(12 岁)牛膝关节分离的软骨细胞的压痕依赖性力学特性。我们还测量了肌动蛋白和中间丝对软骨细胞压痕依赖性力学性能的贡献。通过将 AFM 与共聚焦荧光显微镜相结合,我们监测了在压缩下转染细胞(GFP-vimentin 和 mCherry-actin)的细胞骨架和生物力学变形。我们发现,所有年龄组的软骨细胞弹性模量随压痕深度(15-2000nm)的增加而降低。在大于 500nm 的压痕处,成年软骨细胞的弹性模量显著大于新生细胞。在所有检查的年龄组中,粘弹性模量(瞬时和平衡)相当;然而,老年软骨细胞的固有粘度低于新生细胞。破坏肌动蛋白或中间丝结构通过降低弹性模量和粘弹性特性改变软骨细胞的力学性能,导致处理后压痕依赖性响应明显丧失。使用共聚焦荧光显微镜在用破坏剂处理的转染细胞中监测肌动蛋白和中间丝细胞骨架结构,两种处理方法对肌动蛋白丝都有深远的破坏作用。在这里,我们表明,破坏中间丝结构间接改变了肌动蛋白细胞骨架的构型。这些发现强调了细胞骨架元素在软骨细胞整体力学响应中的重要性,表明中间丝完整性是软骨细胞非线性弹性特性的关键。本研究提高了我们对单细胞水平关节软骨力学特性的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c22d/3628340/18b2370fe3a6/pone.0061651.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验