Suppr超能文献

黏弹性细胞力学和肌动蛋白重塑依赖于所施加压力的速率。

Viscoelastic cell mechanics and actin remodelling are dependent on the rate of applied pressure.

机构信息

Institute of Bioengineering, School of Engineering and Material Science, Queen Mary University of London, London, United Kingdom.

出版信息

PLoS One. 2012;7(9):e43938. doi: 10.1371/journal.pone.0043938. Epub 2012 Sep 11.

Abstract

BACKGROUND

Living cells are subjected to external and internal mechanical stresses. The effects of these stresses on the deformation and subsequent biological response of the cells remains unclear. This study tested the hypothesis that the rate at which pressure (or stress) is applied influence the viscoelastic properties of the cell associated with differences in the dynamics of the actin cytoskeleton.

PRINCIPAL FINDING

Micropipette aspiration was used to determine the instantaneous and equilibrium moduli and the viscosity of isolated chondrocytes based on the standard linear solid (SLS) model and a variation of this incorporating Boltzmann superposition. Cells were visualised for 180 seconds following aspiration to 7 cmH(2)O at 0.35, 0.70 and 5.48 cmH(2)O/sec. Cell recovery was then examined for a further 180 seconds once the pressure had been removed. Reducing the rate of application of pressure reduced the levels of cell deformation and recovery associated with a significant increase in modulus and viscosity. Using GFP transfection and confocal microscopy, we show that chondrocyte deformation involves distortion, disassembly and subsequent reassembly of the cortical actin cytoskeleton. At faster pressure rates, cell deformation produced an increase in cell volume associated with membrane bleb formation. GFP-actin transfection inhibited the pressure rate dependent variation in cell mechanics indicating that this behaviour is regulated by GFP-sensitive actin dynamics.

CONCLUSION

We suggest that slower rates of aspiration pressure enable greater levels of cortical actin distortion. This is partially inhibited by GFP or faster aspiration rates leading to membrane bleb formation and an increase in cell volume. Thus the rate of application of pressure regulates the viscoelastic mechanical properties of living cells through pressure rate sensitive differences in actin dynamics. Therefore cells appear softer when aspirated at a faster rate in contrast to what is expected of a normal viscoelastic material.

摘要

背景

活细胞会受到外部和内部机械压力的影响。这些压力对细胞变形和随后的生物学反应的影响尚不清楚。本研究验证了这样一个假设,即压力(或应力)施加的速度会影响与肌动蛋白细胞骨架动力学差异相关的细胞的粘弹性特性。

主要发现

使用微管吸吮技术,根据标准线性固体(SLS)模型和包含玻尔兹曼叠加的这一模型的变体,确定了分离软骨细胞的瞬时和平衡模量以及粘度。在以 0.35、0.70 和 5.48 cmH2O/sec 的速度将细胞抽吸至 7 cmH2O 后,对细胞进行 180 秒的可视化,然后在压力消除后再观察 180 秒的细胞恢复情况。降低压力施加的速度会降低与模量和粘度显著增加相关的细胞变形和恢复水平。通过 GFP 转染和共聚焦显微镜,我们表明软骨细胞变形涉及皮质肌动蛋白细胞骨架的扭曲、解体和随后的重新组装。在较快的压力速率下,细胞变形会导致细胞体积增加,与细胞膜泡形成有关。GFP-肌动蛋白转染抑制了细胞力学中与压力速率相关的变化,表明这种行为受到 GFP 敏感肌动蛋白动力学的调节。

结论

我们认为,较慢的抽吸压力速率使皮质肌动蛋白扭曲的程度更大。GFP 或更快的抽吸速率部分抑制了这种变形,导致细胞膜泡形成和细胞体积增加。因此,压力施加的速度通过压力速率敏感的肌动蛋白动力学差异来调节活细胞的粘弹性力学特性。因此,与正常粘弹性材料的预期相反,当以更快的速度抽吸细胞时,细胞似乎更柔软。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d032/3439462/5cc7627337b4/pone.0043938.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验