Sadlish Heather, Galicia-Vazquez Gabriela, Paris C Gregory, Aust Thomas, Bhullar Bhupinder, Chang Lena, Helliwell Stephen B, Hoepfner Dominic, Knapp Britta, Riedl Ralph, Roggo Silvio, Schuierer Sven, Studer Christian, Porco John A, Pelletier Jerry, Movva N Rao
Novartis Institutes for BioMedical Research , Novartis Campus, CH-4056 Basel, Switzerland.
ACS Chem Biol. 2013 Jul 19;8(7):1519-27. doi: 10.1021/cb400158t. Epub 2013 May 7.
Translation initiation is an emerging target in oncology and neurobiology indications. Naturally derived and synthetic rocaglamide scaffolds have been used to interrogate this pathway; however, there is uncertainty regarding their precise mechanism(s) of action. We exploited the genetic tractability of yeast to define the primary effect of both a natural and a synthetic rocaglamide in a cellular context and characterized the molecular target using biochemical studies and in silico modeling. Chemogenomic profiling and mutagenesis in yeast identified the eIF (eukaryotic Initiation Factor) 4A helicase homologue as the primary molecular target of rocaglamides and defined a discrete set of residues near the RNA binding motif that confer resistance to both compounds. Three of the eIF4A mutations were characterized regarding their functional consequences on activity and response to rocaglamide inhibition. These data support a model whereby rocaglamides stabilize an eIF4A-RNA interaction to either alter the level and/or impair the activity of the eIF4F complex. Furthermore, in silico modeling supports the annotation of a binding pocket delineated by the RNA substrate and the residues identified from our mutagenesis screen. As expected from the high degree of conservation of the eukaryotic translation pathway, these observations are consistent with previous observations in mammalian model systems. Importantly, we demonstrate that the chemically distinct silvestrol and synthetic rocaglamides share a common mechanism of action, which will be critical for optimization of physiologically stable derivatives. Finally, these data confirm the value of the rocaglamide scaffold for exploring the impact of translational modulation on disease.
翻译起始是肿瘤学和神经生物学领域中一个新兴的靶点。天然衍生和合成的罗卡酰胺支架已被用于研究这一途径;然而,它们的确切作用机制尚不确定。我们利用酵母的遗传易处理性来确定天然和合成罗卡酰胺在细胞环境中的主要作用,并通过生化研究和计算机模拟对分子靶点进行了表征。酵母中的化学基因组分析和诱变确定真核起始因子(eIF)4A解旋酶同源物是罗卡酰胺的主要分子靶点,并确定了RNA结合基序附近一组离散的残基,这些残基赋予了对这两种化合物的抗性。对三个eIF4A突变在活性和对罗卡酰胺抑制反应方面的功能后果进行了表征。这些数据支持了一个模型,即罗卡酰胺稳定eIF4A-RNA相互作用,以改变eIF4F复合物的水平和/或损害其活性。此外,计算机模拟支持了由RNA底物和我们诱变筛选中鉴定的残基所描绘的结合口袋的注释。正如真核翻译途径高度保守所预期的那样,这些观察结果与之前在哺乳动物模型系统中的观察结果一致。重要的是,我们证明化学性质不同的银松素和合成罗卡酰胺具有共同的作用机制,这对于优化生理稳定的衍生物至关重要。最后,这些数据证实了罗卡酰胺支架在探索翻译调控对疾病影响方面的价值。