文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

核糖体生物合成与在癌症中的功能:从机制到治疗

Ribosome Biogenesis and Function in Cancer: From Mechanisms to Therapy.

作者信息

Gitareja Kezia, Chelliah Shalini S, Sanij Elaine, Sandhu Shahneen, Kang Jian, Khot Amit

机构信息

St. Vincent's Institute of Medical Research, Melbourne, VIC 3065, Australia.

Department of Medicine-St. Vincent's Hospital, University of Melbourne, Melbourne, VIC 3065, Australia.

出版信息

Cancers (Basel). 2025 Jul 31;17(15):2534. doi: 10.3390/cancers17152534.


DOI:10.3390/cancers17152534
PMID:40805230
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12346075/
Abstract

Ribosome biogenesis is a highly coordinated, multi-step process that assembles the ribosomal machinery responsible for translating mRNAs into proteins. It begins with the rate-limiting step of RNA polymerase I (Pol I) transcription of the 47S ribosomal RNA (rRNA) genes within a specialised nucleolar region in the nucleus, followed by rRNA processing, modification, and assembly with ribosomal proteins and the 5S rRNA produced by Pol III. The ribosomal subunits are then exported to the cytoplasm to form functional ribosomes. This process is tightly regulated by the PI3K/RAS/MYC oncogenic network, which is frequently deregulated in many cancers. As a result, ribosome synthesis, mRNA translation, and protein synthesis rates are increased. Growing evidence supports the notion that dysregulation of ribosome biogenesis and mRNA translation plays a pivotal role in the pathogenesis of cancer, positioning the ribosome as a promising therapeutic target. In this review, we summarise current understanding of dysregulated ribosome biogenesis and function in cancer, evaluate the clinical development of ribosome targeting therapies, and explore emerging targets for therapeutic intervention in this rapidly evolving field.

摘要

核糖体生物合成是一个高度协调的多步骤过程,该过程组装负责将mRNA翻译成蛋白质的核糖体机制。它始于细胞核内一个特殊核仁区域中RNA聚合酶I(Pol I)转录47S核糖体RNA(rRNA)基因的限速步骤,随后是rRNA加工、修饰以及与核糖体蛋白和由Pol III产生的5S rRNA组装。然后核糖体亚基被输出到细胞质中形成功能性核糖体。这个过程受到PI3K/RAS/MYC致癌网络的严格调控,该网络在许多癌症中经常失调。结果,核糖体合成、mRNA翻译和蛋白质合成速率增加。越来越多的证据支持这样一种观点,即核糖体生物合成和mRNA翻译的失调在癌症发病机制中起关键作用,将核糖体定位为一个有前景的治疗靶点。在这篇综述中,我们总结了目前对癌症中核糖体生物合成失调和功能的理解,评估了核糖体靶向治疗的临床进展,并探索了在这个快速发展的领域中新兴的治疗干预靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ed4/12346075/3fcd2fb10cc7/cancers-17-02534-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ed4/12346075/5236879ca880/cancers-17-02534-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ed4/12346075/5cfe91f66633/cancers-17-02534-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ed4/12346075/2ce206937596/cancers-17-02534-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ed4/12346075/599c2c1af8c5/cancers-17-02534-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ed4/12346075/3fcd2fb10cc7/cancers-17-02534-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ed4/12346075/5236879ca880/cancers-17-02534-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ed4/12346075/5cfe91f66633/cancers-17-02534-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ed4/12346075/2ce206937596/cancers-17-02534-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ed4/12346075/599c2c1af8c5/cancers-17-02534-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ed4/12346075/3fcd2fb10cc7/cancers-17-02534-g005.jpg

相似文献

[1]
Ribosome Biogenesis and Function in Cancer: From Mechanisms to Therapy.

Cancers (Basel). 2025-7-31

[2]
Focal adhesion kinase promotes ribosome biogenesis to drive advanced thyroid cancer cell growth and survival.

Front Oncol. 2025-5-19

[3]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[4]
Explainable machine learning reveals ribosome biogenesis biomarkers in preeclampsia risk prediction.

Front Immunol. 2025-6-9

[5]
Short-Term Memory Impairment

2025-1

[6]
Phase separation via protein-protein and protein-RNA networks coordinates ribosome assembly in the nucleolus.

Biochim Biophys Acta Gen Subj. 2025-9

[7]
Elbow Fractures Overview

2025-1

[8]
Nucleolar Organization in Response to Transcriptional Stress.

Cancer Sci. 2025-7-29

[9]
N-methyladenosine upregulates ribosome biogenesis in environmental carcinogenesis.

Sci Total Environ. 2023-7-10

[10]
BCCIP is required for nucleolar recruitment of eIF6 and 12S pre-rRNA production during 60S ribosome biogenesis.

Nucleic Acids Res. 2020-12-16

本文引用的文献

[1]
Reversal of ABCG2-mediated drug resistance by tinodasertib (ETC-206).

Front Pharmacol. 2025-6-13

[2]
Modulation of anti-tumour immunity by XPO1 inhibitors.

Explor Target Antitumor Ther. 2025-4-23

[3]
Chemical Probes for Studying the Eukaryotic Translation Initiation Factor 4E (eIF4E)-Regulated Translatome in Cancer.

ACS Pharmacol Transl Sci. 2025-2-17

[4]
Nucleolar origins: challenging perspectives on evolution and function.

Open Biol. 2025-3

[5]
A subcellular map of translational machinery composition and regulation at the single-molecule level.

Science. 2025-3-7

[6]
Second-Generation Cap Analogue Prodrugs for Targeting Aberrant Eukaryotic Translation Initiation Factor 4E Activity in Cancer.

ACS Med Chem Lett. 2024-12-12

[7]
Phase Ib Pharmacodynamic Study of the MNK Inhibitor Tomivosertib (eFT508) Combined With Paclitaxel in Patients With Refractory Metastatic Breast Cancer.

Clin Cancer Res. 2025-2-3

[8]
Stress-Induced Evolution of the Nucleolus: The Role of Ribosomal Intergenic Spacer (rIGS) Transcripts.

Biomolecules. 2024-10-20

[9]
DMDA-PatA mediates RNA sequence-selective translation repression by anchoring eIF4A and DDX3 to GNG motifs.

Nat Commun. 2024-9-2

[10]
MYC and KRAS cooperation: from historical challenges to therapeutic opportunities in cancer.

Signal Transduct Target Ther. 2024-8-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索