Suppr超能文献

基于软体动物源溴代吲哚类化合物的环氧化酶选择性抑制作用:计算研究。

Mollusc-Derived Brominated Indoles for the Selective Inhibition of Cyclooxygenase: A Computational Expedition.

机构信息

Marine Ecology Research Centre, Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia.

Molecular Modeling Drug-design and Discovery Laboratory, Pharmacology Research Division, BCSIR Laboratories Chattogram, Bangladesh Council of Scientific and Industrial Research, Chattogram 4217, Bangladesh.

出版信息

Molecules. 2021 Oct 29;26(21):6538. doi: 10.3390/molecules26216538.

Abstract

Inflammation plays an important role in different chronic diseases. Brominated indoles derived from the Australian marine mollusk () are of interest for their anti-inflammatory properties. This study evaluates the binding mechanism and potentiality of several brominated indoles (tyrindoxyl sulfate, tyrindoleninone, 6-bromoisatin, and 6,6'-dibromoindirubin) against inflammatory mediators cyclooxygenases-1/2 (COX-1/2) using molecular docking, followed by molecular dynamics simulation, along with physicochemical, drug-likeness, pharmacokinetic (pk), and toxicokinetic (tk) properties. Molecular docking identified that these indole compounds are anchored, with the main amino acid residues, positioned in the binding pocket of the COX-1/2, required for selective inhibition. Moreover, the molecular dynamics simulation based on root mean square deviation (RMSD), radius of gyration (Rg), solvent accessible surface area (SASA), and root mean square fluctuation (RMSF) analyses showed that these natural brominated molecules transit rapidly to a progressive constant configuration during binding with COX-1/2 and seem to accomplish a consistent dynamic behavior by maintaining conformational stability and compactness. The results were comparable to the Food and Drug Administration (FDA)-approved selective COX inhibitor, aspirin. Furthermore, the free energy of binding for the compounds assessed by molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) confirmed the binding capacity of indoles towards COX-1/2, with suitable binding energy values except for the polar precursor tyrindoxyl sulfate (with COX-1). The physicochemical and drug-likeness analysis showed zero violations of Lipinski's rule, and the compounds are predicted to have excellent pharmacokinetic profiles. These indoles are projected to be non-mutagenic and free from hepatotoxicity, with no inhibition of human inhibitors, and the oral acute toxicity LD in rats is predicted to be similar or lower than aspirin. Overall, this work has identified a plausible mechanism for selective COX inhibition by natural marine indoles as potential therapeutic candidates for the mitigation of inflammation.

摘要

炎症在各种慢性疾病中起着重要作用。源自澳大利亚海洋软体动物的溴代吲哚因其抗炎特性而受到关注。本研究使用分子对接,随后进行分子动力学模拟,以及理化性质、药物相似性、药代动力学(PK)和毒代动力学(TK)特性,评估了几种溴代吲哚(tyrindoxyl 硫酸盐、tyrindoleninone、6-溴靛蓝和 6,6'-二溴靛玉红)对炎症介质环氧合酶-1/2(COX-1/2)的结合机制和潜力。分子对接确定,这些吲哚化合物通过与 COX-1/2 的结合口袋中的主要氨基酸残基锚定,从而对其进行选择性抑制。此外,基于均方根偏差(RMSD)、回转半径(Rg)、溶剂可及表面积(SASA)和均方根波动(RMSF)分析的分子动力学模拟表明,这些天然溴代分子在与 COX-1/2 结合时迅速转变为渐进的恒定构象,并且似乎通过保持构象稳定性和紧凑性来实现一致的动态行为。结果与食品和药物管理局(FDA)批准的选择性 COX 抑制剂阿司匹林相当。此外,通过分子力学-泊松-玻尔兹曼表面积(MM-PBSA)评估的化合物结合自由能证实了吲哚与 COX-1/2 的结合能力,除了极性前体 tyrindoxyl 硫酸盐(与 COX-1)外,具有合适的结合能值。理化性质和药物相似性分析表明,没有违反 Lipinski 规则,并且这些化合物预计具有良好的药代动力学特征。这些吲哚被预测为非致突变性和无肝毒性,不会抑制人抑制剂,并且在大鼠中的口服急性毒性 LD 预计与阿司匹林相似或更低。总的来说,这项工作确定了天然海洋吲哚选择性 COX 抑制的合理机制,为减轻炎症提供了潜在的治疗候选物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc2d/8587571/046c782a2d13/molecules-26-06538-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验