Department of Cancer Genetics/CIC-P Inserm 9502, Paoli Calmettes Institute, University of Aix-Marseille II, Marseille, France.
Pathobiology. 2013;80(5):219-27. doi: 10.1159/000339432. Epub 2013 Apr 23.
Family structure, lack of reliable information, cost, and delay are usual concerns when deciding to perform BRCA analyses. Testing breast cancer tissues with four antibodies (MS110, lys27H3, vimentin, and KI67) in addition to grade evaluation enabled us to rapidly select patients for genetic testing identification. We constituted an initial breast cancer tissue microarray, considered as a learning set, comprising 27 BRCA1 and 81 sporadic tumors. A second independent validation set of 28 BRCA1 tumors was matched to 28 sporadic tumors using the same original conditions. We investigated morphological parameters and 21 markers by immunohistochemistry. A logistic regression model was used to select the minimal number of markers providing the best model to predict BRCA1 status. The model was applied to the validation set to estimate specificity and sensibility. In the initial set, univariate analyses identified 11 markers significantly associated with BRCA1 status. Then, the best multivariate model comprised only grade 3, MS110, Lys27H3, vimentin, and KI67. When applied to the validation set, BRCA1 tumors were correctly classified with a sensitivity of 83% and a specificity of 81%. The performance of this model was superior when compared to other profiles. This study offers a new rapid and cost-effective method for the prescreening of patients at high risk of being BRCA1 mutation carriers, to guide genetic testing, and finally to provide appropriate preventive measures, advice, and treatments including targeted therapy to patients and their families.
家族结构、缺乏可靠信息、费用和延迟是决定进行 BRCA 分析时通常会关注的问题。除了分级评估外,对乳腺癌组织进行四种抗体(MS110、lys27H3、波形蛋白和 KI67)的检测使我们能够快速选择进行基因检测的患者。我们构建了一个初始的乳腺癌组织微阵列,作为学习集,包括 27 个 BRCA1 和 81 个散发性肿瘤。第二个独立的 BRCA1 肿瘤验证集与 28 个散发性肿瘤匹配,使用相同的原始条件。我们通过免疫组织化学研究了形态学参数和 21 个标志物。使用逻辑回归模型选择标记物的最小数量,以提供预测 BRCA1 状态的最佳模型。将该模型应用于验证集,以估计特异性和敏感性。在初始集中,单变量分析确定了 11 个与 BRCA1 状态显著相关的标记物。然后,最佳的多变量模型仅包括分级 3、MS110、Lys27H3、波形蛋白和 KI67。当应用于验证集时,BRCA1 肿瘤的分类敏感性为 83%,特异性为 81%。与其他模型相比,该模型的性能更优。这项研究提供了一种新的快速、经济有效的方法,用于对高风险 BRCA1 突变携带者进行患者的预筛选,以指导基因检测,并最终为患者及其家属提供适当的预防措施、建议和治疗,包括靶向治疗。