Department of Pathology, University Medical Center Utrecht.
Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
Am J Surg Pathol. 2018 Sep;42(9):1262-1272. doi: 10.1097/PAS.0000000000001115.
Heredity, mostly due to BRCA germline mutations, is involved in 5% to 10% of all breast cancer cases. Potential BRCA germline mutation carriers may be missed following the current eligibility criteria for BRCA genetic testing. The purpose of this study was to, therefore, develop an immunohistochemistry-based model to predict likelihood of underlying BRCA1 and BRCA2 germline mutations in unselected female breast cancer patients. The study group consisted of 100 BRCA1-related, 46 BRCA2-related, and 94 sporadic breast carcinomas. Tumor expression of 44 proteins involved in (BRCA-related) breast carcinogenesis was assessed by immunohistochemistry. A prediction model for BRCA-related versus non-BRCA-related breast cancer was developed using Lasso logistic regression analysis with cross-validation. The model was assessed for its discriminative value and clinical usefulness. The optimal prediction model included 14 predictors (age, cyclinD1, ERα, ERβ, FGFR2, FGFR3, FGFR4, GLUT1, IGFR, Ki67, mitotic activity index, MLH1, p120, and TOP2A), showed excellent discriminative performance (area under the receiving operating characteristic curve=0.943; 95% confidence interval=0.909-0.978), and reasonable calibration. To enhance possible implementation, we developed an alternative model only considering more widely available immunostains. This model included 15 predictors (age, BCL2, CK5/6, CK8/18, cyclinD1, E-cadherin, ERα, HER2, Ki67, mitotic activity index , MLH1, p16, PMS2, PR, and vimentin), and still showed very good discriminative performance (area under the receiving operating characteristic curve=0.853; 95% confidence interval=0.795-0.911). We present a well-applicable and accurate tool to predict which breast cancer patients may have an underlying BRCA germline mutation, largely consisting of immunohistochemical markers independent of clinical characteristics. This may improve identification of potential BRCA germline mutation carriers and optimize referral for germline mutation testing.
遗传因素,主要是由于 BRCA 种系突变,参与了所有乳腺癌病例的 5%至 10%。目前的 BRCA 基因检测合格标准可能会遗漏潜在的 BRCA 种系突变携带者。因此,本研究旨在建立一种基于免疫组织化学的模型,以预测未经选择的女性乳腺癌患者中潜在的 BRCA1 和 BRCA2 种系突变的可能性。研究组包括 100 例 BRCA1 相关、46 例 BRCA2 相关和 94 例散发性乳腺癌。通过免疫组织化学评估了 44 种参与(BRCA 相关)乳腺癌发生的蛋白质的肿瘤表达。使用带有交叉验证的 Lasso 逻辑回归分析建立了用于 BRCA 相关与非 BRCA 相关乳腺癌的预测模型。评估了该模型的判别价值和临床实用性。最优预测模型包括 14 个预测因子(年龄、cyclinD1、ERα、ERβ、FGFR2、FGFR3、FGFR4、GLUT1、IGFR、Ki67、有丝分裂活性指数、MLH1、p120 和 TOP2A),具有出色的判别性能(接受者操作特征曲线下面积=0.943;95%置信区间=0.909-0.978)和合理的校准。为了增强可能的实施效果,我们仅考虑更广泛可用的免疫组化染色剂,开发了一种替代模型。该模型包括 15 个预测因子(年龄、BCL2、CK5/6、CK8/18、cyclinD1、E-cadherin、ERα、HER2、Ki67、有丝分裂活性指数、MLH1、p16、PMS2、PR 和 vimentin),仍然具有非常出色的判别性能(接受者操作特征曲线下面积=0.853;95%置信区间=0.795-0.911)。我们提出了一种易于应用且准确的工具,可预测哪些乳腺癌患者可能存在潜在的 BRCA 种系突变,这些突变主要由与临床特征无关的免疫组织化学标志物组成。这可能有助于确定潜在的 BRCA 种系突变携带者,并优化种系突变检测的转诊。