Suppr超能文献

基于人类接触经验网络的传染病模型:弥合动态网络数据与接触矩阵之间的差距。

An infectious disease model on empirical networks of human contact: bridging the gap between dynamic network data and contact matrices.

机构信息

CNRS UMR 7332, CPT, Aix Marseille Université, Marseille 13288, France.

出版信息

BMC Infect Dis. 2013 Apr 23;13:185. doi: 10.1186/1471-2334-13-185.

Abstract

BACKGROUND

The integration of empirical data in computational frameworks designed to model the spread of infectious diseases poses a number of challenges that are becoming more pressing with the increasing availability of high-resolution information on human mobility and contacts. This deluge of data has the potential to revolutionize the computational efforts aimed at simulating scenarios, designing containment strategies, and evaluating outcomes. However, the integration of highly detailed data sources yields models that are less transparent and general in their applicability. Hence, given a specific disease model, it is crucial to assess which representations of the raw data work best to inform the model, striking a balance between simplicity and detail.

METHODS

We consider high-resolution data on the face-to-face interactions of individuals in a pediatric hospital ward, obtained by using wearable proximity sensors. We simulate the spread of a disease in this community by using an SEIR model on top of different mathematical representations of the empirical contact patterns. At the most detailed level, we take into account all contacts between individuals and their exact timing and order. Then, we build a hierarchy of coarse-grained representations of the contact patterns that preserve only partially the temporal and structural information available in the data. We compare the dynamics of the SEIR model across these representations.

RESULTS

We show that a contact matrix that only contains average contact durations between role classes fails to reproduce the size of the epidemic obtained using the high-resolution contact data and also fails to identify the most at-risk classes. We introduce a contact matrix of probability distributions that takes into account the heterogeneity of contact durations between (and within) classes of individuals, and we show that, in the case study presented, this representation yields a good approximation of the epidemic spreading properties obtained by using the high-resolution data.

CONCLUSIONS

Our results mark a first step towards the definition of synopses of high-resolution dynamic contact networks, providing a compact representation of contact patterns that can correctly inform computational models designed to discover risk groups and evaluate containment policies. We show in a typical case of a structured population that this novel kind of representation can preserve in simulation quantitative features of the epidemics that are crucial for their study and management.

摘要

背景

将经验数据整合到旨在模拟传染病传播的计算框架中,面临着许多挑战。随着人类流动和接触的高分辨率信息的可用性不断提高,这些挑战变得越来越紧迫。这些数据的大量涌现有可能彻底改变旨在模拟场景、设计遏制策略和评估结果的计算工作。然而,高度详细的数据源的整合会导致模型的透明度降低,适用范围也更窄。因此,对于特定的疾病模型,评估原始数据的哪些表示最有助于为模型提供信息至关重要,需要在简单性和细节之间取得平衡。

方法

我们考虑了在儿科病房中使用可穿戴式接近传感器获得的个体面对面互动的高分辨率数据。我们使用 SEIR 模型在经验接触模式的不同数学表示之上模拟疾病的传播。在最详细的层面上,我们考虑了个体之间的所有接触及其确切的时间和顺序。然后,我们构建了接触模式的粗粒度表示层次结构,仅部分保留数据中可用的时间和结构信息。我们比较了这些表示形式下 SEIR 模型的动态。

结果

我们表明,仅包含角色类之间平均接触持续时间的接触矩阵无法复制使用高分辨率接触数据获得的疫情规模,也无法识别最危险的类别。我们引入了一个包含个体之间和内部接触持续时间异质性的概率分布接触矩阵,并且表明,在所提出的案例研究中,这种表示形式可以很好地逼近使用高分辨率数据获得的疫情传播特性。

结论

我们的结果标志着定义高分辨率动态接触网络摘要的第一步,提供了接触模式的紧凑表示形式,可以为旨在发现风险群体和评估遏制政策的计算模型提供正确的信息。我们在一个典型的结构化人群案例中表明,这种新的表示形式可以在模拟中保留对其研究和管理至关重要的疫情的定量特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5918/3640968/ba42bd0f608e/1471-2334-13-185-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验