Suppr超能文献

根皮层负担影响玉米的耐旱性。

Root cortical burden influences drought tolerance in maize.

机构信息

Department of Plant Science, The Pennsylvania State University, University Park, PA 16803, USA.

出版信息

Ann Bot. 2013 Jul;112(2):429-37. doi: 10.1093/aob/mct069. Epub 2013 Apr 25.

Abstract

BACKGROUND AND AIMS

Root cortical aerenchyma (RCA) increases water and nutrient acquisition by reducing the metabolic costs of soil exploration. In this study the hypothesis was tested that living cortical area (LCA; transversal root cortical area minus aerenchyma area and intercellular air space) is a better predictor of root respiration, soil exploration and, therefore, drought tolerance than RCA formation or root diameter.

METHODS

RCA, LCA, root respiration, root length and biomass loss in response to drought were evaluated in maize (Zea mays) recombinant inbred lines grown with adequate and suboptimal irrigation in soil mesocosms.

KEY RESULTS

Root respiration was highly correlated with LCA. LCA was a better predictor of root respiration than either RCA or root diameter. RCA reduced respiration of large-diameter roots. Since RCA and LCA varied in different parts of the root system, the effects of RCA and LCA on root length were complex. Greater crown-root LCA was associated with reduced crown-root length relative to total root length. Reduced LCA was associated with improved drought tolerance.

CONCLUSIONS

The results are consistent with the hypothesis that LCA is a driver of root metabolic costs and may therefore have adaptive significance for water acquisition in drying soil.

摘要

背景和目的

根皮层气腔(RCA)通过降低土壤探测的代谢成本来增加水和养分的获取。在这项研究中,提出了一个假设,即活皮层面积(LCA;横向根皮层面积减去气腔面积和细胞间气隙)比 RCA 形成或根直径更能预测根呼吸、土壤探测,因此更能预测耐旱性。

方法

在土壤中生长的玉米(Zea mays)重组自交系中,评估了 RCA、LCA、根呼吸、根长和对干旱的生物量损失,采用充足和次优灌溉。

主要结果

根呼吸与 LCA 高度相关。LCA 比 RCA 或根直径更能预测根呼吸。RCA 降低了大直径根的呼吸作用。由于 RCA 和 LCA 在根系的不同部位变化,RCA 和 LCA 对根长的影响是复杂的。冠根 LCA 的增加与相对于总根长的冠根长度减少有关。LCA 的减少与耐旱性的提高有关。

结论

这些结果与假设一致,即 LCA 是根代谢成本的驱动因素,因此可能对干燥土壤中水分获取具有适应性意义。

相似文献

1
Root cortical burden influences drought tolerance in maize.
Ann Bot. 2013 Jul;112(2):429-37. doi: 10.1093/aob/mct069. Epub 2013 Apr 25.
2
Root cortical aerenchyma improves the drought tolerance of maize (Zea mays L.).
Plant Cell Environ. 2010 May;33(5):740-9. doi: 10.1111/j.1365-3040.2009.02099.x.
3
Large root cortical cell size improves drought tolerance in maize.
Plant Physiol. 2014 Dec;166(4):2166-78. doi: 10.1104/pp.114.250449. Epub 2014 Oct 7.
4
Reduced root cortical cell file number improves drought tolerance in maize.
Plant Physiol. 2014 Dec;166(4):1943-55. doi: 10.1104/pp.114.249037. Epub 2014 Oct 29.
6
Reduced Lateral Root Branching Density Improves Drought Tolerance in Maize.
Plant Physiol. 2015 Aug;168(4):1603-15. doi: 10.1104/pp.15.00187. Epub 2015 Jun 15.
7
Reduced root cortical burden improves growth and grain yield under low phosphorus availability in maize.
Plant Cell Environ. 2018 Jul;41(7):1579-1592. doi: 10.1111/pce.13197. Epub 2018 May 16.
9
Root cortical aerenchyma enhances nitrogen acquisition from low-nitrogen soils in maize.
Plant Physiol. 2014 Oct;166(2):726-35. doi: 10.1104/pp.114.241711. Epub 2014 Jun 2.

引用本文的文献

1
Between Two Extremes: Root Anatomical Responses to Drought and Waterlogging.
Plant Direct. 2025 Jul 19;9(7):e70097. doi: 10.1002/pld3.70097. eCollection 2025 Jul.
2
Exogenous melatonin alleviates drought stress in cotton by enhancing root cortical activity and metabolic adaptation.
Front Plant Sci. 2025 Jul 2;16:1625757. doi: 10.3389/fpls.2025.1625757. eCollection 2025.
3
Elevational variation in anatomical traits of the first-order roots and their adaptation mechanisms.
Plant Divers. 2024 Sep 25;47(2):291-299. doi: 10.1016/j.pld.2024.09.008. eCollection 2025 Mar.
4
Root phenotypes for improved nitrogen capture.
Plant Soil. 2024;502(1-2):31-85. doi: 10.1007/s11104-023-06301-2. Epub 2023 Oct 4.
5
Evidence that variation in root anatomy contributes to local adaptation in Mexican native maize.
Evol Appl. 2024 Mar 10;17(3):e13673. doi: 10.1111/eva.13673. eCollection 2024 Mar.
6
Modeling the effects of strigolactone levels on maize root system architecture.
Front Plant Sci. 2024 Jan 11;14:1329556. doi: 10.3389/fpls.2023.1329556. eCollection 2023.
9
10
Transcription factor bHLH121 regulates root cortical aerenchyma formation in maize.
Proc Natl Acad Sci U S A. 2023 Mar 21;120(12):e2219668120. doi: 10.1073/pnas.2219668120. Epub 2023 Mar 16.

本文引用的文献

1
Root architectural tradeoffs for water and phosphorus acquisition.
Funct Plant Biol. 2005 Sep;32(8):737-748. doi: 10.1071/FP05043.
3
Physiological roles for aerenchyma in phosphorus-stressed roots.
Funct Plant Biol. 2003 Jul;30(5):493-506. doi: 10.1071/FP03046.
5
Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops.
Plant Physiol. 2011 Jul;156(3):1041-9. doi: 10.1104/pp.111.175414. Epub 2011 May 24.
8
Root cortical aerenchyma improves the drought tolerance of maize (Zea mays L.).
Plant Cell Environ. 2010 May;33(5):740-9. doi: 10.1111/j.1365-3040.2009.02099.x.
9
Plant productivity and environment.
Science. 1982 Oct 29;218(4571):443-8. doi: 10.1126/science.218.4571.443.
10
Improving water use in crop production.
Philos Trans R Soc Lond B Biol Sci. 2008 Feb 12;363(1491):639-58. doi: 10.1098/rstb.2007.2175.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验