Suppr超能文献

在模拟的氮素不足条件下,大根皮层细胞和减少的皮层细胞层改善了生长。

Large root cortical cells and reduced cortical cell files improve growth under suboptimal nitrogen in silico.

机构信息

Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA.

出版信息

Plant Physiol. 2023 Jul 3;192(3):2261-2275. doi: 10.1093/plphys/kiad214.

Abstract

Suboptimal nitrogen availability is a primary constraint to plant growth. We used OpenSimRoot, a functional-structural plant/soil model, to test the hypothesis that larger root cortical cell size (CCS), reduced cortical cell file number (CCFN), and their interactions with root cortical aerenchyma (RCA) and lateral root branching density (LRBD) are useful adaptations to suboptimal soil nitrogen availability in maize (Zea mays). Reduced CCFN increased shoot dry weight over 80%. Reduced respiration, reduced nitrogen content, and reduced root diameter accounted for 23%, 20%, and 33% of increased shoot biomass, respectively. Large CCS increased shoot biomass by 24% compared with small CCS. When simulated independently, reduced respiration and reduced nutrient content increased the shoot biomass by 14% and 3%, respectively. However, increased root diameter resulting from large CCS decreased shoot biomass by 4% due to an increase in root metabolic cost. Under moderate N stress, integrated phenotypes with reduced CCFN, large CCS, and high RCA improved shoot biomass in silt loam and loamy sand soils. In contrast, integrated phenotypes composed of reduced CCFN, large CCS, and reduced LRBD had the greatest growth in silt loam, while phenotypes with reduced CCFN, large CCS, and high LRBD were the best performers in loamy sands. Our results support the hypothesis that larger CCS, reduced CCFN, and their interactions with RCA and LRBD could increase nitrogen acquisition by reducing root respiration and root nutrient demand. Phene synergisms may exist between CCS, CCFN, and LRBD. CCS and CCFN merit consideration for breeding cereal crops with improved nitrogen acquisition, which is critical for global food security.

摘要

氮素供应不足是植物生长的主要限制因素。我们使用 OpenSimRoot,一种功能结构植物/土壤模型,来检验以下假设,即较大的根皮层细胞大小(CCS)、减少的皮层细胞层数(CCFN)以及它们与根皮层通气组织(RCA)和侧根分支密度(LRBD)的相互作用,是玉米(Zea mays)适应土壤氮素供应不足的有用策略。减少 CCFN 可使地上部干重增加 80%以上。减少呼吸、减少氮含量和减少根直径分别占地上部生物量增加的 23%、20%和 33%。与小 CCS 相比,大 CCS 使地上部生物量增加了 24%。当单独模拟时,减少呼吸和减少养分含量分别使地上部生物量增加了 14%和 3%。然而,由于根代谢成本的增加,大 CCS 导致的根直径增加使地上部生物量减少了 4%。在中度氮胁迫下,减少 CCFN、大 CCS 和高 RCA 的综合表型在粉壤土和壤土砂中提高了地上部生物量。相比之下,在粉壤土中,由减少 CCFN、大 CCS 和减少 LRBD 组成的综合表型具有最大的生长,而在壤土砂中,具有减少 CCFN、大 CCS 和高 LRBD 的表型表现最佳。我们的结果支持以下假设,即较大的 CCS、减少的 CCFN 及其与 RCA 和 LRBD 的相互作用可以通过减少根呼吸和根养分需求来增加氮素吸收。CCS、CCFN 和 LRBD 之间可能存在表型协同作用。CCS 和 CCFN 值得考虑用于培育具有改善氮素吸收能力的谷类作物,这对全球粮食安全至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f40/10315315/9bb40c0dcd73/kiad214f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验