Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305-5122, USA.
Epilepsia. 2013 Jul;54(7):1232-9. doi: 10.1111/epi.12195. Epub 2013 Apr 26.
To determine whether developmental synaptic pruning defects in epileptic C1q-knockout (KO) mice are accompanied by postsynaptic abnormalities in dendrites and/or spines.
Immunofluorescence staining was performed on biocytin-filled layer Vb pyramidal neurons in sensorimotor cortex. Basal dendritic arbors and their spines were reconstructed with NEUROLUCIDA software, and their morphologic characteristics were quantitated in Neuroexplorer.
Seven to nine completely filled pyramidal neurons were analyzed from the wild-type (WT) and C1q KO groups. Compared to WT controls, KO mice showed significant structural modifications in their basal dendrites including (1) higher density of dendritic spines (0.60 ± 0.03/μm vs. 0.49 ± 0.03/μm dendritic length in WT, p < 0.05); (2) remarkably increased occurrence of thin spines (0.26 ± 0.02/μm vs. 0.14 ± 0.02/μm dendritic length in control, p < 0.01); (3) longer dendritic length (2,680 ± 159 μm vs. 2,119 ± 108 μm in control); and (4) increased branching (22.6 ± 1.9 vs. 16.2 ± 1.3 in WT at 80 μm from soma center, p < 0.05; 12.4 ± 1.4 vs. 8.2 ± 0.6 in WT at 120 μm from soma center, respectively, p < 0.05). Dual immunolabeling demonstrated the expression of putative glutamate receptor 2 (GluR2) on some thin spines. These dendritic alterations are likely postsynaptic structural consequences of failure of synaptic pruning in the C1q KO mice.
Failure to prune excessive excitatory synapses in C1q KO mice is a likely mechanism underlying abnormalities in postsynaptic dendrites, including increased branching and alterations in spine type and density. It is also possible that seizure activity contributes to these abnormalities. These structural abnormalities, together with increased numbers of excitatory synapses, likely contribute to epileptogenesis in C1q KO mice.
确定癫痫 C1q 敲除 (KO) 小鼠发育性突触修剪缺陷是否伴有树突和/或棘突的突触后异常。
对感觉运动皮层 Vb 层充满生物胞素的锥体神经元进行免疫荧光染色。使用 NEUROLUCIDA 软件重建基底树突及其棘突,并在 Neuroexplorer 中定量分析其形态特征。
从野生型 (WT) 和 C1q KO 组中分析了 7 到 9 个完全充满的锥体神经元。与 WT 对照组相比,KO 小鼠的基底树突结构发生了显著变化,包括:(1) 棘突密度增加 (0.60 ± 0.03/μm 比 WT 对照组的 0.49 ± 0.03/μm 树突长度,p < 0.05);(2) 薄棘突的发生率显著增加 (0.26 ± 0.02/μm 比 WT 对照组的 0.14 ± 0.02/μm 树突长度,p < 0.01);(3) 树突长度增加 (2680 ± 159 μm 比 WT 对照组的 2119 ± 108 μm);和 (4) 分支增加 (距胞体中心 80 μm 处的 22.6 ± 1.9 比 WT 的 16.2 ± 1.3,p < 0.05;距胞体中心 120 μm 处的 12.4 ± 1.4 比 WT 的 8.2 ± 0.6,p < 0.05)。双重免疫标记显示,在一些薄棘突上表达了谷氨酸受体 2 (GluR2)。这些树突改变可能是 C1q KO 小鼠突触修剪失败导致的突触后结构的结果。
C1q KO 小鼠中过度兴奋性突触的修剪失败可能是突触后树突异常的一种机制,包括分支增加以及棘突类型和密度的改变。癫痫发作活动也可能导致这些异常。这些结构异常,加上兴奋性突触数量的增加,可能导致 C1q KO 小鼠的癫痫发生。