Suppr超能文献

关联学习通过反转中间神经元相关性模式来增强群体编码。

Associative learning enhances population coding by inverting interneuronal correlation patterns.

机构信息

Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA.

出版信息

Neuron. 2013 Apr 24;78(2):352-63. doi: 10.1016/j.neuron.2013.02.023.

Abstract

Learning-dependent cortical encoding has been well described in single neurons. But behaviorally relevant sensory signals drive the coordinated activity of millions of cortical neurons; whether learning produces stimulus-specific changes in population codes is unknown. Because the pattern of firing rate correlations between neurons--an emergent property of neural populations--can significantly impact encoding fidelity, we hypothesize that it is a target for learning. Using an associative learning procedure, we manipulated the behavioral relevance of natural acoustic signals and examined the evoked spiking activity in auditory cortical neurons in songbirds. We show that learning produces stimulus-specific changes in the pattern of interneuronal correlations that enhance the ability of neural populations to recognize signals relevant for behavior. This learning-dependent enhancement increases with population size. The results identify the pattern of interneuronal correlation in neural populations as a target of learning that can selectively enhance the representations of specific sensory signals.

摘要

学习相关的皮层编码在单个神经元中已有很好的描述。但是,与行为相关的感觉信号驱动着数百万个皮层神经元的协调活动;学习是否会在群体编码中产生特定于刺激的变化尚不清楚。由于神经元之间的放电率相关性模式——神经群体的一个涌现特性——会显著影响编码保真度,我们假设它是学习的一个目标。我们使用一种联想学习程序,操纵自然声信号的行为相关性,并在鸣禽的听觉皮层神经元中检测诱发的尖峰活动。我们表明,学习会导致神经元间相关性模式产生特定于刺激的变化,从而增强神经群体识别与行为相关信号的能力。这种学习依赖性的增强随着群体大小的增加而增加。研究结果确定了神经群体中神经元间相关性模式是学习的一个目标,它可以选择性地增强特定感觉信号的表示。

相似文献

1
Associative learning enhances population coding by inverting interneuronal correlation patterns.
Neuron. 2013 Apr 24;78(2):352-63. doi: 10.1016/j.neuron.2013.02.023.
2
Song recognition learning and stimulus-specific weakening of neural responses in the avian auditory forebrain.
J Neurophysiol. 2010 Apr;103(4):1785-97. doi: 10.1152/jn.00885.2009. Epub 2010 Jan 27.
3
Perceptual learning directs auditory cortical map reorganization through top-down influences.
J Neurosci. 2006 May 3;26(18):4970-82. doi: 10.1523/JNEUROSCI.3771-05.2006.
4
Spike Train Coactivity Encodes Learned Natural Stimulus Invariances in Songbird Auditory Cortex.
J Neurosci. 2021 Jan 6;41(1):73-88. doi: 10.1523/JNEUROSCI.0248-20.2020. Epub 2020 Nov 11.
6
Information content of auditory cortical responses to time-varying acoustic stimuli.
J Neurophysiol. 2004 Jan;91(1):301-13. doi: 10.1152/jn.00022.2003. Epub 2003 Oct 1.
7
Active recognition enhances the representation of behaviorally relevant information in single auditory forebrain neurons.
J Neurophysiol. 2013 Apr;109(7):1690-703. doi: 10.1152/jn.00461.2012. Epub 2013 Jan 9.
8
Emergence of selectivity and tolerance in the avian auditory cortex.
J Neurosci. 2012 Oct 24;32(43):15158-68. doi: 10.1523/JNEUROSCI.0845-12.2012.
9
Emergence of learned categorical representations within an auditory forebrain circuit.
J Neurosci. 2011 Feb 16;31(7):2595-606. doi: 10.1523/JNEUROSCI.3930-10.2011.
10
Local inhibition modulates learning-dependent song encoding in the songbird auditory cortex.
J Neurophysiol. 2013 Feb;109(3):721-33. doi: 10.1152/jn.00262.2012. Epub 2012 Nov 14.

引用本文的文献

1
A neural geometry approach comprehensively explains apparently conflicting models of visual perceptual learning.
Nat Hum Behav. 2025 May;9(5):1023-1040. doi: 10.1038/s41562-025-02149-x. Epub 2025 Mar 31.
2
Expectation-driven sensory adaptations support enhanced acuity during categorical perception.
Nat Neurosci. 2025 Apr;28(4):861-872. doi: 10.1038/s41593-025-01899-1. Epub 2025 Mar 13.
3
Hierarchical emergence of opponent coding in auditory belt cortex.
J Neurophysiol. 2025 Mar 1;133(3):944-964. doi: 10.1152/jn.00519.2024. Epub 2025 Feb 18.
5
Network state changes in sensory thalamus represent learned outcomes.
Nat Commun. 2024 Sep 7;15(1):7830. doi: 10.1038/s41467-024-51868-8.
6
Recent Visual Experience Reshapes V4 Neuronal Activity and Improves Perceptual Performance.
J Neurosci. 2024 Oct 9;44(41):e1764232024. doi: 10.1523/JNEUROSCI.1764-23.2024.
8
Learning leaves a memory trace in motor cortex.
Curr Biol. 2024 Apr 8;34(7):1519-1531.e4. doi: 10.1016/j.cub.2024.03.003. Epub 2024 Mar 25.
9
A functional logic for neurotransmitter corelease in the cholinergic forebrain pathway.
Proc Natl Acad Sci U S A. 2023 Jul 11;120(28):e2218830120. doi: 10.1073/pnas.2218830120. Epub 2023 Jul 3.
10
A Redundant Cortical Code for Speech Envelope.
J Neurosci. 2023 Jan 4;43(1):93-112. doi: 10.1523/JNEUROSCI.1616-21.2022. Epub 2022 Nov 15.

本文引用的文献

1
Active recognition enhances the representation of behaviorally relevant information in single auditory forebrain neurons.
J Neurophysiol. 2013 Apr;109(7):1690-703. doi: 10.1152/jn.00461.2012. Epub 2013 Jan 9.
2
Local inhibition modulates learning-dependent song encoding in the songbird auditory cortex.
J Neurophysiol. 2013 Feb;109(3):721-33. doi: 10.1152/jn.00262.2012. Epub 2012 Nov 14.
3
Emergence of selectivity and tolerance in the avian auditory cortex.
J Neurosci. 2012 Oct 24;32(43):15158-68. doi: 10.1523/JNEUROSCI.0845-12.2012.
4
Neural correlation is stimulus modulated by feedforward inhibitory circuitry.
J Neurosci. 2012 Jan 11;32(2):506-18. doi: 10.1523/JNEUROSCI.3474-11.2012.
6
Perceptual learning reduces interneuronal correlations in macaque visual cortex.
Neuron. 2011 Aug 25;71(4):750-61. doi: 10.1016/j.neuron.2011.06.015.
8
Measuring and interpreting neuronal correlations.
Nat Neurosci. 2011 Jun 27;14(7):811-9. doi: 10.1038/nn.2842.
9
Cortical map plasticity improves learning but is not necessary for improved performance.
Neuron. 2011 Apr 14;70(1):121-31. doi: 10.1016/j.neuron.2011.02.038.
10
Functional specificity of local synaptic connections in neocortical networks.
Nature. 2011 May 5;473(7345):87-91. doi: 10.1038/nature09880. Epub 2011 Apr 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验