Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA.
Neuron. 2013 Apr 24;78(2):352-63. doi: 10.1016/j.neuron.2013.02.023.
Learning-dependent cortical encoding has been well described in single neurons. But behaviorally relevant sensory signals drive the coordinated activity of millions of cortical neurons; whether learning produces stimulus-specific changes in population codes is unknown. Because the pattern of firing rate correlations between neurons--an emergent property of neural populations--can significantly impact encoding fidelity, we hypothesize that it is a target for learning. Using an associative learning procedure, we manipulated the behavioral relevance of natural acoustic signals and examined the evoked spiking activity in auditory cortical neurons in songbirds. We show that learning produces stimulus-specific changes in the pattern of interneuronal correlations that enhance the ability of neural populations to recognize signals relevant for behavior. This learning-dependent enhancement increases with population size. The results identify the pattern of interneuronal correlation in neural populations as a target of learning that can selectively enhance the representations of specific sensory signals.
学习相关的皮层编码在单个神经元中已有很好的描述。但是,与行为相关的感觉信号驱动着数百万个皮层神经元的协调活动;学习是否会在群体编码中产生特定于刺激的变化尚不清楚。由于神经元之间的放电率相关性模式——神经群体的一个涌现特性——会显著影响编码保真度,我们假设它是学习的一个目标。我们使用一种联想学习程序,操纵自然声信号的行为相关性,并在鸣禽的听觉皮层神经元中检测诱发的尖峰活动。我们表明,学习会导致神经元间相关性模式产生特定于刺激的变化,从而增强神经群体识别与行为相关信号的能力。这种学习依赖性的增强随着群体大小的增加而增加。研究结果确定了神经群体中神经元间相关性模式是学习的一个目标,它可以选择性地增强特定感觉信号的表示。