Suppr超能文献

测量和解释神经元相关性。

Measuring and interpreting neuronal correlations.

机构信息

Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA.

出版信息

Nat Neurosci. 2011 Jun 27;14(7):811-9. doi: 10.1038/nn.2842.

Abstract

Mounting evidence suggests that understanding how the brain encodes information and performs computations will require studying the correlations between neurons. The recent advent of recording techniques such as multielectrode arrays and two-photon imaging has made it easier to measure correlations, opening the door for detailed exploration of their properties and contributions to cortical processing. However, studies have reported discrepant findings, providing a confusing picture. Here we briefly review these studies and conduct simulations to explore the influence of several experimental and physiological factors on correlation measurements. Differences in response strength, the time window over which spikes are counted, spike sorting conventions and internal states can all markedly affect measured correlations and systematically bias estimates. Given these complicating factors, we offer guidelines for interpreting correlation data and a discussion of how best to evaluate the effect of correlations on cortical processing.

摘要

越来越多的证据表明,要理解大脑如何对信息进行编码和计算,就需要研究神经元之间的相关性。最近出现的记录技术,如多电极阵列和双光子成像,使得测量相关性变得更加容易,也为详细探索它们的特性及其对皮质处理的贡献打开了大门。然而,研究报告的结果却存在差异,提供了一个令人困惑的画面。在这里,我们简要回顾了这些研究,并进行了模拟,以探讨几个实验和生理因素对相关性测量的影响。响应强度、用于计数尖峰的时间窗口、尖峰分类约定和内部状态的差异都可能显著影响测量相关性,并系统地偏置估计值。考虑到这些复杂因素,我们提供了解释相关数据的指南,并讨论了如何最好地评估相关性对皮质处理的影响。

相似文献

1
Measuring and interpreting neuronal correlations.测量和解释神经元相关性。
Nat Neurosci. 2011 Jun 27;14(7):811-9. doi: 10.1038/nn.2842.
6
Accurately estimating neuronal correlation requires a new spike-sorting paradigm.准确估计神经元相关性需要一种新的尖峰排序范例。
Proc Natl Acad Sci U S A. 2012 May 8;109(19):7230-5. doi: 10.1073/pnas.1115236109. Epub 2012 Apr 23.
10
Existence of high-order correlations in cortical activity.皮层活动中高阶相关性的存在。
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Oct;68(4 Pt 1):041905. doi: 10.1103/PhysRevE.68.041905. Epub 2003 Oct 8.

引用本文的文献

8
Disentangling signal and noise in neural responses through generative modeling.通过生成模型解析神经反应中的信号与噪声
PLoS Comput Biol. 2025 Jul 21;21(7):e1012092. doi: 10.1371/journal.pcbi.1012092. eCollection 2025 Jul.

本文引用的文献

6
Pooling and correlated neural activity.池化和相关的神经活动。
Front Comput Neurosci. 2010 Apr 19;4:9. doi: 10.3389/fncom.2010.00009. eCollection 2010.
9
The asynchronous state in cortical circuits.皮质电路中的异步状态。
Science. 2010 Jan 29;327(5965):587-90. doi: 10.1126/science.1179850.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验