Suppr超能文献

化学计量学和在线近红外光谱监测生物制药中国仓鼠卵巢细胞培养:对多个培养变量的预测。

Chemometrics and in-line near infrared spectroscopic monitoring of a biopharmaceutical Chinese hamster ovary cell culture: prediction of multiple cultivation variables.

机构信息

F. Hoffmann-La Roche Ltd, Wurmisweg 4303, Kaiseraugst, Switzerland.

出版信息

Talanta. 2013 Jul 15;111:28-38. doi: 10.1016/j.talanta.2013.03.044. Epub 2013 Mar 26.

Abstract

In the present study near infrared (NIR) spectroscopy was used to monitor the cultivation of mammalian Chinese hamster ovary (CHO) cells producing a monoclonal antibody in a fed-batch cell culture process. A temperature shift was applied during the cultivation. The cells were incubated at 37 °C and 33 °C. The Fourier transform near infrared (FT-NIR) multiplex process analyzer spectroscopy was investigated to monitor cultivation variables of the CHO cell culture from 10 independent batches using two channels of the FT-NIR. The measurements were performed on production scale bioreactors of 12,500 L. The cell cultures were analyzed with the spectrometer coupled to a transflection sterilizable fiber optic probe inserted into the bioreactors. Multivariate data analysis (MVDA) employing unsupervised principal component analysis (PCA) and partial least squares regression methods (PLS) were applied. PCA demonstrated that 96% of the observed variability was explained by the process trajectory and the inter-batch variability. PCA was found to be a significant tool in identifying batch homogeneity between lots and in detecting abnormal fermentation runs. Seven different cell culture parameters such as osmolality, glucose concentration, product titer, packed cell volume (PCV), integrated viable packed cell volume (ivPCV), viable cell density (VCD), and integrated viable cell count (iVCC) were monitored inline and predicted by NIR. NIR spectra and reference analytics data were computed using control charts to evaluate the monitoring abilities. Control charts of each media component were under control by NIR spectroscopy. The PLS calibration plots offered accurate predictive capabilities for each media. This paper underlines the capability for inline prediction of multiple cultivation variables during bioprocess monitoring.

摘要

在本研究中,近红外(NIR)光谱用于监测哺乳动物中国仓鼠卵巢(CHO)细胞在分批补料细胞培养过程中生产单克隆抗体的培养。培养过程中应用了温度骤变。细胞在 37°C 和 33°C 下孵育。研究了傅里叶变换近红外(FT-NIR)多路过程分析光谱仪,使用 FT-NIR 的两个通道监测了 10 个独立批次的 CHO 细胞培养的培养变量。测量是在 12500L 的生产规模生物反应器上进行的。细胞培养物通过与插入生物反应器中的透射可消毒光纤探头耦合的光谱仪进行分析。多元数据分析(MVDA)采用无监督主成分分析(PCA)和偏最小二乘回归方法(PLS)。PCA 表明,96%的观察到的变异性由过程轨迹和批间变异性解释。PCA 被发现是识别批次间均匀性和检测异常发酵运行的重要工具。监测了 7 种不同的细胞培养参数,如渗透压、葡萄糖浓度、产物滴度、细胞体积(PCV)、整体活细胞体积(ivPCV)、活细胞密度(VCD)和整体活细胞计数(iVCC),并通过 NIR 进行预测。NIR 光谱和参考分析数据使用控制图进行计算,以评估监测能力。每个培养基成分的控制图均由 NIR 光谱控制。PLS 校准图为每个培养基提供了准确的预测能力。本文强调了在生物过程监测中进行多个培养变量在线预测的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验