Suppr超能文献

半合成模型校准用于原位近红外光谱法监测哺乳动物细胞培养中的葡萄糖。

Semisynthetic model calibration for monitoring glucose in mammalian cell culture with in situ near infrared spectroscopy.

机构信息

Process Development Engineering, Genentech, Inc., 1 DNA Way, South San Francisco, California, 94080.

出版信息

Biotechnol Bioeng. 2014 May;111(5):896-903. doi: 10.1002/bit.25161. Epub 2013 Dec 17.

Abstract

Near infrared (NIR) spectroscopy has the capability of providing real-time, multi-analyte monitoring of the complex reaction mixture associated with cell culture processes. However, the development of robust models to predict the concentration of key analytes has proven difficult. In this study, a modeling methodology using semisynthetic process samples was used to predict glucose concentrations in Chinese Hamster Ovary (CHO) cell culture processes. Partial Least Squares (PLS) regression models were built from in situ NIR spectra, and glucose levels between 4.0 and 14.0 g/L. Two models were constructed. The "standard model" used data provided by cell culture production process samples. The "full model" included the data provided from both cell culture production process samples and semisynthetic samples. The semisynthetic samples were generated by titrating cell culture samples with target viable cell density (VCD) and lactate levels to defined glucose concentrations. The robustness of each model was gauged by predicting glucose in a subsequent cell culture process utilizing a media formulation and cell line not contained in the calibration data sets. The "full model" generated glucose predictions with a root mean square error of prediction (RMSEP) of 0.99 g/L while the "standard model" provided glucose predictions with a RMSEP of 2.26 g/L. The modeling approach utilizing semisynthetic samples proved to be faster development and more effective than using just standard cell culture processes.

摘要

近红外(NIR)光谱技术具有实时、多分析物监测细胞培养过程中复杂反应混合物的能力。然而,开发用于预测关键分析物浓度的稳健模型一直具有挑战性。在这项研究中,使用半合成过程样品的建模方法来预测中国仓鼠卵巢(CHO)细胞培养过程中的葡萄糖浓度。偏最小二乘(PLS)回归模型是从原位 NIR 光谱中建立的,葡萄糖水平在 4.0 到 14.0 g/L 之间。构建了两个模型。“标准模型”使用细胞培养生产过程样品提供的数据。“完整模型”包括来自细胞培养生产过程样品和半合成样品的数据。半合成样品是通过用目标活细胞密度(VCD)和乳酸水平滴定细胞培养样品来生成,以达到定义的葡萄糖浓度。通过利用培养基配方和不在校准数据集内的细胞系来预测后续细胞培养过程中的葡萄糖,来评估每个模型的稳健性。“完整模型”生成的葡萄糖预测值的预测均方根误差(RMSEP)为 0.99 g/L,而“标准模型”提供的葡萄糖预测值的 RMSEP 为 2.26 g/L。与仅使用标准细胞培养过程相比,使用半合成样品的建模方法证明开发速度更快、更有效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验