W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920, USA.
Mater Sci Eng C Mater Biol Appl. 2013 Jul 1;33(5):2846-54. doi: 10.1016/j.msec.2013.03.004. Epub 2013 Mar 14.
Hydroxyapatite (HA) compacts having average grain sizes of 168±0.086 nm, 1.48±0.627 μm and 5.01±1.02 μm are processed from synthesized HA powder by microwave sintering at varying sintering temperature for different times. Superior mechanical and biological properties are shown by nano-grain HA compacts as compared to their micron grained counterparts. Compressive strength, indentation hardness, and indentation fracture toughness are increased with the decrease in HA grain size. The highest surface energy and maximum wettability are exhibited by nano-grain HA. HA compacts are assessed for cell-material interaction by SEM, MTT and immunochemistry assays using human osteoblast cell line for 1, 5 and 11 days. MTT assays showed higher number of living cells and faster proliferation on nano-grain HA surface. Osteoblast cells on nano-grain HA surface expressed significantly higher amount of vinculin and alkaline phosphatase (ALP) protein markers for cell adhesion and differentiation respectively. This study shows the effect of grain size on physical, mechanical and in vitro biological properties of microwave sintered HA compacts.
通过微波烧结合成的 HA 粉末,得到平均粒径为 168±0.086nm、1.48±0.627μm 和 5.01±1.02μm 的 HA 压坯。与微米级相比,纳米晶粒 HA 压坯具有更优异的力学和生物学性能。纳米晶粒 HA 压坯的抗压强度、压痕硬度和压痕断裂韧性随着 HA 晶粒尺寸的减小而增加。纳米晶粒 HA 表现出最高的表面能和最大的润湿性。通过 SEM、MTT 和免疫化学分析,用人成骨细胞系对 HA 压坯进行细胞-材料相互作用评估,时间分别为 1、5 和 11 天。MTT 分析表明,纳米晶粒 HA 表面的活细胞数量更多,增殖速度更快。纳米晶粒 HA 表面上的成骨细胞分别表达出更高量的粘着斑蛋白和碱性磷酸酶(ALP)蛋白标志物,用于细胞黏附和分化。本研究表明了晶粒尺寸对微波烧结 HA 压坯的物理、力学和体外生物学性能的影响。