Department of Neuroscience, Tufts University, Boston, MA, USA.
Eur J Neurosci. 2013 Aug;38(3):2453-67. doi: 10.1111/ejn.12241. Epub 2013 Apr 29.
The K(+) -Cl(-) cotransporter type 2 is the major Cl(-) extrusion mechanism in most adult neurons. This process in turn leads to Cl(-) influx upon activation of γ-aminobutyric acid type A (GABAA ) receptors and the canonical hyperpolarising inhibitory postsynaptic potential. Several neurological disorders are treated with drugs that target and enhance GABAA receptor signaling, including the commonly used benzodiazepine diazepam and the anesthetic propofol. Some of these disorders are also associated with deficits in GABAA signaling and become less sensitive to therapeutic drugs that target GABAA receptors. To date, it is unknown if alterations in the neuronal Cl(-) gradient affect the efficacies of diazepam and propofol. We therefore used the in vitro model of glutamate-induced hyperexcitability to test if alterations in the Cl(-) gradient affect the efficacy of GABAA modulators. We exclusively utilised the gramicidin perforated-patch-clamp configuration to preserve the endogenous Cl(-) gradient in rat neurons. Brief exposure to glutamate reduced the inhibitory efficacy of diazepam within 5 min, which was caused by the collapse of the Cl(-) gradient, and not due to reductions in GABAA receptor number. Unlike diazepam, propofol retained its efficacy by shunting the membrane conductance despite the glutamate-induced appearance of depolarising GABAA -mediated currents. Similarly, pharmacological inhibition of K(+) -Cl(-) cotransporter type 2 by furosemide disrupted Cl(-) homeostasis and reduced the efficacy of diazepam but not propofol. Collectively our results suggest that pathological hyperexcitable conditions could cause the rapid accumulation of intracellular Cl(-) and the appearance of depolarising GABAA -mediated currents that would decrease the efficacy of diazepam.
钾氯离子共转运蛋白 2 型(K(+) -Cl(-) cotransporter type 2)是大多数成年神经元中主要的氯离子外排机制。这一过程继而导致γ-氨基丁酸 A 型(GABAA)受体激活和典型的超极化抑制性突触后电位时氯离子内流。一些神经紊乱疾病采用靶向和增强 GABAA 受体信号的药物治疗,包括常用的苯二氮䓬类药物地西泮和麻醉剂异丙酚。其中一些疾病也与 GABAA 信号缺陷有关,对靶向 GABAA 受体的治疗药物的敏感性降低。迄今为止,尚不清楚神经元氯离子梯度的改变是否会影响地西泮和异丙酚的疗效。因此,我们使用谷氨酸诱导的过度兴奋的体外模型来测试氯离子梯度的改变是否会影响 GABAA 调节剂的疗效。我们专门利用 gramicidin 穿孔贴片钳配置来保留大鼠神经元中的内源性氯离子梯度。谷氨酸短暂暴露在 5 分钟内降低了地西泮的抑制效力,这是由于氯离子梯度的崩溃,而不是由于 GABAA 受体数量的减少。与地西泮不同,异丙酚通过分流膜电导保留其效力,尽管谷氨酸诱导出现去极化的 GABAA 介导的电流。同样,通过呋塞米抑制钾氯离子共转运蛋白 2 型(K(+) -Cl(-) cotransporter type 2)破坏了氯离子稳态,降低了地西泮的效力,但不影响异丙酚。总的来说,我们的结果表明,病理性过度兴奋的状态可能导致细胞内氯离子的快速积累和出现去极化的 GABAA 介导的电流,从而降低地西泮的疗效。