Suppr超能文献

一种用于儿科人群中癫痫和对照 EEG 记录分类的新参数特征描述符。

A new parametric feature descriptor for the classification of epileptic and control EEG records in pediatric population.

机构信息

Center for Advanced Technology and Education, College of Engineering and Computing, Florida International University, Miami, FL 33174, USA.

出版信息

Int J Neural Syst. 2012 Apr;22(2):1250001. doi: 10.1142/S0129065712500013.

Abstract

This study evaluates the sensitivity, specificity and accuracy in associating scalp EEG to either control or epileptic patients by means of artificial neural networks (ANNs) and support vector machines (SVMs). A confluence of frequency and temporal parameters are extracted from the EEG to serve as input features to well-configured ANN and SVM networks. Through these classification results, we thus can infer the occurrence of high-risk (epileptic) as well as low risk (control) patients for potential follow up procedures.

摘要

本研究通过人工神经网络(ANN)和支持向量机(SVM)评估头皮 EEG 与正常或癫痫患者相关联的敏感性、特异性和准确性。从 EEG 中提取频率和时间参数的融合作为输入特征,用于配置良好的 ANN 和 SVM 网络。通过这些分类结果,我们可以推断出高危(癫痫)和低危(对照)患者的发生,以便进行潜在的后续处理。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验