Suppr超能文献

通过自适应背景建模实现稳健的新生儿 EEG 癫痫发作检测。

Robust neonatal EEG seizure detection through adaptive background modeling.

机构信息

Neonatal Brain Research Group, Department of Electrical and Electronic Engineering, University College Cork, Ireland.

出版信息

Int J Neural Syst. 2013 Aug;23(4):1350018. doi: 10.1142/S0129065713500184. Epub 2013 Jun 4.

Abstract

Adaptive probabilistic modeling of the EEG background is proposed for seizure detection in neonates with hypoxic ischemic encephalopathy. The decision is made based on the temporal derivative of the seizure probability with respect to the adaptively modeled level of background activity. The robustness of the system to long duration "seizure-like" artifacts, in particular those due to respiration, is improved. The system was developed using statistical leave-one-patient-out performance assessment, on a large clinical dataset, comprising 38 patients of 1479 h total duration. The developed technique was then validated by a single test on a separate totally unseen randomized prospective dataset of 51 neonates totaling 2540 h of duration. By exploiting the proposed adaptation, the ROC area is increased from 93.4% to 96.1% (41% relative improvement). The number of false detections per hour is decreased from 0.42 to 0.24, while maintaining the correct detection of seizure burden at 70%. These results on the unseen data were predicted from the rigorous leave-one-patient-out validation and confirm the validity of our algorithm development process.

摘要

提出了一种用于检测缺氧缺血性脑病新生儿癫痫的 EEG 背景自适应概率建模方法。该决策是基于对自适应建模的背景活动水平的癫痫概率的时间导数做出的。该系统对长时间的“癫痫样”伪影(特别是由于呼吸引起的伪影)具有更强的鲁棒性。该系统使用基于统计的每位患者留一法性能评估,在一个包含 38 名患者、总时长为 1479 小时的大型临床数据集上进行了开发。然后,通过在一个单独的、完全未知的、随机的前瞻性数据集上进行单次测试,对 51 名新生儿的 2540 小时总时长进行了验证,该数据集共有 51 名新生儿。通过利用所提出的自适应方法,ROC 面积从 93.4%增加到 96.1%(相对提高了 41%)。每小时的假阳性检测次数从 0.42 减少到 0.24,同时保持 70%的正确检测到癫痫负荷。这些在未见数据上的结果是从严格的每位患者留一法验证中预测出来的,证实了我们的算法开发过程的有效性。

相似文献

2
Inclusion of temporal priors for automated neonatal EEG classification.纳入时间先验信息实现新生儿脑电自动分类。
J Neural Eng. 2012 Aug;9(4):046002. doi: 10.1088/1741-2560/9/4/046002. Epub 2012 Jun 19.
7
EEG-based neonatal seizure detection with Support Vector Machines.基于支持向量机的脑电图新生儿惊厥检测。
Clin Neurophysiol. 2011 Mar;122(3):464-473. doi: 10.1016/j.clinph.2010.06.034. Epub 2010 Aug 14.
10
An evaluation of automated neonatal seizure detection methods.新生儿惊厥自动检测方法的评估
Clin Neurophysiol. 2005 Jul;116(7):1533-41. doi: 10.1016/j.clinph.2005.03.006.

引用本文的文献

7
Toward a Personalized Real-Time Diagnosis in Neonatal Seizure Detection.迈向新生儿癫痫检测中的个性化实时诊断
IEEE J Transl Eng Health Med. 2017 Sep 11;5:2800414. doi: 10.1109/JTEHM.2017.2737992. eCollection 2017.
10
Validation of an automated seizure detection algorithm for term neonates.足月新生儿自动癫痫发作检测算法的验证
Clin Neurophysiol. 2016 Jan;127(1):156-168. doi: 10.1016/j.clinph.2015.04.075. Epub 2015 May 9.

本文引用的文献

2
Inclusion of temporal priors for automated neonatal EEG classification.纳入时间先验信息实现新生儿脑电自动分类。
J Neural Eng. 2012 Aug;9(4):046002. doi: 10.1088/1741-2560/9/4/046002. Epub 2012 Jun 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验