Neonatal Brain Research Group, Department of Electrical and Electronic Engineering, University College Cork, Ireland.
Int J Neural Syst. 2013 Aug;23(4):1350018. doi: 10.1142/S0129065713500184. Epub 2013 Jun 4.
Adaptive probabilistic modeling of the EEG background is proposed for seizure detection in neonates with hypoxic ischemic encephalopathy. The decision is made based on the temporal derivative of the seizure probability with respect to the adaptively modeled level of background activity. The robustness of the system to long duration "seizure-like" artifacts, in particular those due to respiration, is improved. The system was developed using statistical leave-one-patient-out performance assessment, on a large clinical dataset, comprising 38 patients of 1479 h total duration. The developed technique was then validated by a single test on a separate totally unseen randomized prospective dataset of 51 neonates totaling 2540 h of duration. By exploiting the proposed adaptation, the ROC area is increased from 93.4% to 96.1% (41% relative improvement). The number of false detections per hour is decreased from 0.42 to 0.24, while maintaining the correct detection of seizure burden at 70%. These results on the unseen data were predicted from the rigorous leave-one-patient-out validation and confirm the validity of our algorithm development process.
提出了一种用于检测缺氧缺血性脑病新生儿癫痫的 EEG 背景自适应概率建模方法。该决策是基于对自适应建模的背景活动水平的癫痫概率的时间导数做出的。该系统对长时间的“癫痫样”伪影(特别是由于呼吸引起的伪影)具有更强的鲁棒性。该系统使用基于统计的每位患者留一法性能评估,在一个包含 38 名患者、总时长为 1479 小时的大型临床数据集上进行了开发。然后,通过在一个单独的、完全未知的、随机的前瞻性数据集上进行单次测试,对 51 名新生儿的 2540 小时总时长进行了验证,该数据集共有 51 名新生儿。通过利用所提出的自适应方法,ROC 面积从 93.4%增加到 96.1%(相对提高了 41%)。每小时的假阳性检测次数从 0.42 减少到 0.24,同时保持 70%的正确检测到癫痫负荷。这些在未见数据上的结果是从严格的每位患者留一法验证中预测出来的,证实了我们的算法开发过程的有效性。