Department of Energy and Systems Engineering, University of Pisa, Largo Lucio Lazzarino, Pisa, 56122, Italy.
Int J Neural Syst. 2013 Jun;23(3):1350011. doi: 10.1142/S0129065713500111. Epub 2013 Mar 26.
Functional magnetic resonance imaging (fMRI) is used to study brain functional connectivity (FC) after filtering the physiological noise (PN). Herein, we employ: adaptive filtering for removing nonstationary PN; random variables (RV) coefficient for FC analysis. Comparisons with standard techniques were performed by quantifying PN filtering and FC in neural vs. non-neural regions. As a result, adaptive filtering plus RV coefficient showed a greater suppression of PN and higher connectivity in neural regions, representing a novel effective approach to analyze fMRI data.
功能磁共振成像(fMRI)用于研究过滤生理噪声(PN)后的大脑功能连接(FC)。在这里,我们采用:自适应滤波去除非平稳 PN;随机变量(RV)系数进行 FC 分析。通过量化神经与非神经区域的 PN 滤波和 FC,与标准技术进行比较。结果表明,自适应滤波加 RV 系数对 PN 的抑制作用更强,神经区域的连接性更高,代表了一种分析 fMRI 数据的新有效方法。