Department of Energy and Systems Engineering, University of Pisa, Largo Lucio Lazzarino, Pisa, 56122, Italy.
Int J Neural Syst. 2014 May;24(3):1450010. doi: 10.1142/S0129065714500105. Epub 2013 Dec 10.
Sources of noise in resting-state fMRI experiments include instrumental and physiological noises, which need to be filtered before a functional connectivity analysis of brain regions is performed. These noisy components show autocorrelated and nonstationary properties that limit the efficacy of standard techniques (i.e. time filtering and general linear model). Herein we describe a novel approach based on the combination of singular spectrum analysis and adaptive filtering, which allows a greater noise reduction and yields better connectivity estimates between regions at rest, providing a new feasible procedure to analyze fMRI data.
静息态 fMRI 实验中的噪声源包括仪器噪声和生理噪声,在对脑区进行功能连接分析之前需要对其进行滤波。这些有噪声的成分具有自相关性和非平稳性,这限制了标准技术(即时间滤波和广义线性模型)的效果。在此,我们描述了一种基于奇异谱分析和自适应滤波相结合的新方法,该方法可以实现更大程度的降噪,并在静息状态下获得更好的区域连接估计,为分析 fMRI 数据提供了一种新的可行方法。