Sandoval Ruben M, Molitoris Bruce A
Medicine/Nephrology, Indiana University School of Medicine.
J Vis Exp. 2013 Apr 17(74):50052. doi: 10.3791/50052.
Kidney diseases involving urinary loss of large essential macromolecules, such as serum albumin, have long been thought to be caused by alterations in the permeability barrier comprised of podocytes, vascular endothelial cells, and a basement membrane working in unison. Data from our laboratory using intravital 2-photon microscopy revealed a more permeable glomerular filtration barrier (GFB) than previously thought under physiologic conditions, with retrieval of filtered albumin occurring in an early subset of cells called proximal tubule cells (PTC)(1,2,3). Previous techniques used to study renal filtration and establishing the characteristic of the filtration barrier involved micropuncture of the lumen of these early tubular segments with sampling of the fluid content and analysis(4). These studies determined albumin concentration in the luminal fluid to be virtually non-existent; corresponding closely to what is normally detected in the urine. However, characterization of dextran polymers with defined sizes by this technique revealed those of a size similar to serum albumin had higher levels in the tubular lumen and urine; suggesting increased permeability(5). Herein is a detailed outline of the technique used to directly visualize and quantify glomerular fluorescent albumin permeability in vivo. This method allows for detection of filtered albumin across the filtration barrier into Bowman's space (the initial chamber of urinary filtration); and also allows quantification of albumin reabsorption by proximal tubules and visualization of subsequent albumin transcytosis(6). The absence of fluorescent albumin along later tubular segments en route to the bladder highlights the efficiency of the retrieval pathway in the earlier proximal tubule segments. Moreover, when this technique was applied to determine permeability of dextrans having a similar size to albumin virtually identical permeability values were reported(2). These observations directly support the need to expand the focus of many proteinuric renal diseases to included alterations in proximal tubule cell reclamation.
长期以来,人们一直认为涉及大量必需大分子(如血清白蛋白)经尿液流失的肾脏疾病是由足细胞、血管内皮细胞和协同工作的基底膜组成的通透性屏障改变所致。我们实验室利用活体双光子显微镜获得的数据显示,在生理条件下,肾小球滤过屏障(GFB)的通透性比之前认为的更高,滤过的白蛋白在称为近端小管细胞(PTC)的早期细胞亚群中被重吸收(1,2,3)。以往用于研究肾脏滤过和确定滤过屏障特征的技术包括对这些早期肾小管节段的管腔进行微穿刺,采集管腔内容物并进行分析(4)。这些研究确定管腔液中的白蛋白浓度几乎不存在;这与尿液中通常检测到的情况非常接近。然而,通过该技术对具有确定大小的葡聚糖聚合物进行表征发现,与血清白蛋白大小相似的聚合物在肾小管腔和尿液中的水平较高;这表明通透性增加(5)。本文详细概述了用于在体内直接可视化和量化肾小球荧光白蛋白通透性的技术。该方法能够检测滤过的白蛋白穿过滤过屏障进入鲍曼囊(尿液滤过的起始腔室);还能够量化近端小管对白蛋白的重吸收,并可视化随后的白蛋白转胞吞作用(6)。在通向膀胱的后续肾小管节段中没有荧光白蛋白,这突出了早期近端小管节段中重吸收途径的效率。此外,当应用该技术测定与白蛋白大小相似的葡聚糖的通透性时,报告的通透性值几乎相同(2)。这些观察结果直接支持将许多蛋白尿性肾脏疾病的研究重点扩大到包括近端小管细胞重吸收改变的必要性。