Hohlrieder M, Teuschl A H, Cicha K, van Griensven M, Redl H, Stampfl J
A.M.I. Agency for Medical Innovations, Feldkirch, Austria.
Biomed Mater Eng. 2013;23(3):225-37. doi: 10.3233/BME-130746.
Various studies have shown that physical stimuli modulate cell function and this has motivated the development of a bioreactor to engineer tissues in vitro by exposing them to mechanical loads. Here, we present a bioreactor for the physical stimulation of anterior cruciate ligament (ACL) grafts, whereby complex multi-dimensional strain can be applied to the matrices. Influences from environmental conditions to the behavior of different cells on our custom-made silk scaffold can be investigated since the design of the bioreactor allows controlling these parameters precisely. With the braided design of the presented silk scaffold we achieve maximum loads and stiffness values matching those of the human ACL. Thus, the existent degummed and wet silk scaffolds absorb maximum loads of 2030±109 N with stiffness values of 336±40 N/mm.
多项研究表明,物理刺激可调节细胞功能,这推动了一种生物反应器的开发,该生物反应器通过使组织承受机械负荷来在体外构建组织。在此,我们展示了一种用于对前交叉韧带(ACL)移植物进行物理刺激的生物反应器,借此可将复杂的多维应变施加于基质上。由于该生物反应器的设计允许精确控制这些参数,因此可以研究环境条件对我们定制的丝绸支架上不同细胞行为的影响。通过所展示的丝绸支架的编织设计,我们实现了与人类ACL相匹配的最大负荷和刚度值。因此,现有的脱胶湿丝绸支架吸收的最大负荷为2030±109 N,刚度值为336±40 N/mm。