the Department of Computing, The Hong Kong PolytechnicUniversity, Kowloon PQ 729, Hong Kong.
IEEE Trans Image Process. 2013 Oct;22(10):3751-65. doi: 10.1109/TIP.2013.2260165. Epub 2013 Apr 25.
Online iris recognition using distantly acquired images in a less imaging constrained environment requires the development of a efficient iris segmentation approach and recognition strategy that can exploit multiple features available for the potential identification. This paper presents an effective solution toward addressing such a problem. The developed iris segmentation approach exploits a random walker algorithm to efficiently estimate coarsely segmented iris images. These coarsely segmented iris images are postprocessed using a sequence of operations that can effectively improve the segmentation accuracy. The robustness of the proposed iris segmentation approach is ascertained by providing comparison with other state-of-the-art algorithms using publicly available UBIRIS.v2, FRGC, and CASIA.v4-distance databases. Our experimental results achieve improvement of 9.5%, 4.3%, and 25.7% in the average segmentation accuracy, respectively, for the UBIRIS.v2, FRGC, and CASIA.v4-distance databases, as compared with most competing approaches. We also exploit the simultaneously extracted periocular features to achieve significant performance improvement. The joint segmentation and combination strategy suggest promising results and achieve average improvement of 132.3%, 7.45%, and 17.5% in the recognition performance, respectively, from the UBIRIS.v2, FRGC, and CASIA.v4-distance databases, as compared with the related competing approaches.
在成像约束较少的环境中,通过远程获取的图像进行在线虹膜识别需要开发一种高效的虹膜分割方法和识别策略,以利用潜在识别所需的多种特征。本文提出了一种有效的解决方案。所开发的虹膜分割方法利用随机游走算法来有效地估算粗分割的虹膜图像。这些粗分割的虹膜图像使用一系列操作进行后处理,这些操作可以有效地提高分割精度。通过使用公开的 UBIRIS.v2、FRGC 和 CASIA.v4-distance 数据库,与其他最先进的算法进行比较,确定了所提出的虹膜分割方法的稳健性。我们的实验结果分别在 UBIRIS.v2、FRGC 和 CASIA.v4-distance 数据库中提高了 9.5%、4.3%和 25.7%的平均分割精度,与大多数竞争方法相比。我们还利用同时提取的眼周特征来实现显著的性能提升。联合分割和组合策略表明了有前景的结果,与相关的竞争方法相比,在 UBIRIS.v2、FRGC 和 CASIA.v4-distance 数据库中的识别性能分别提高了 132.3%、7.45%和 17.5%。