Suppr超能文献

基于近红外相机传感器的粗糙瞳孔检测的深度残差卷积神经网络眼部识别。

Deep Residual CNN-Based Ocular Recognition Based on Rough Pupil Detection in the Images by NIR Camera Sensor.

机构信息

Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Korea.

出版信息

Sensors (Basel). 2019 Feb 18;19(4):842. doi: 10.3390/s19040842.

Abstract

Accurate segmentation of the iris area in input images has a significant effect on the accuracy of iris recognition and is a very important preprocessing step in the overall iris recognition process. In previous studies on iris recognition, however, the accuracy of iris segmentation was reduced when the images of captured irises were of low quality due to problems such as optical and motion blurring, thick eyelashes, and light reflected from eyeglasses. Deep learning-based iris segmentation has been proposed to improve accuracy, but its disadvantage is that it requires a long processing time. To resolve this problem, this study proposes a new method that quickly finds a rough iris box area without accurately segmenting the iris region in the input images and performs ocular recognition based on this. To address this problem of reduced accuracy, the recognition is performed using the ocular area, which is a little larger than the iris area, and a deep residual network (ResNet) is used to resolve the problem of reduced recognition rates due to misalignment between the enrolled and recognition iris images. Experiments were performed using three databases: Institute of Automation Chinese Academy of Sciences (CASIA)-Iris-Distance, CASIA-Iris-Lamp, and CASIA-Iris-Thousand. They confirmed that the method proposed in this study had a higher recognition accuracy than existing methods.

摘要

准确地分割输入图像中的虹膜区域对虹膜识别的准确性有重要影响,是整个虹膜识别过程中非常重要的预处理步骤。然而,在以前的虹膜识别研究中,由于光学和运动模糊、浓密的睫毛、眼镜反射等问题,导致拍摄到的虹膜图像质量较低,从而降低了虹膜分割的准确性。基于深度学习的虹膜分割方法已经被提出以提高准确性,但它的缺点是需要很长的处理时间。为了解决这个问题,本研究提出了一种新的方法,该方法可以快速找到粗略的虹膜框区域,而无需在输入图像中准确地分割虹膜区域,并基于此进行眼部识别。为了解决识别准确性降低的问题,使用比虹膜区域稍大的眼部区域进行识别,并使用深度残差网络(ResNet)解决由于注册和识别虹膜图像之间的未对准导致的识别率降低的问题。实验使用了三个数据库:中国科学院自动化研究所(CASIA)-虹膜距离、CASIA-虹膜灯和 CASIA-虹膜千。结果表明,与现有方法相比,本研究提出的方法具有更高的识别准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11bf/6412594/ac174a4ce4a6/sensors-19-00842-g001.jpg

相似文献

2
Towards online iris and periocular recognition under relaxed imaging constraints.
IEEE Trans Image Process. 2013 Oct;22(10):3751-65. doi: 10.1109/TIP.2013.2260165. Epub 2013 Apr 25.
3
Person identification using fusion of iris and periocular deep features.
Neural Netw. 2020 Feb;122:407-419. doi: 10.1016/j.neunet.2019.11.009. Epub 2019 Nov 23.
4
Unified framework for automated iris segmentation using distantly acquired face images.
IEEE Trans Image Process. 2012 Sep;21(9):4068-79. doi: 10.1109/TIP.2012.2199125. Epub 2012 May 14.
6
Blind Quality Assessment of Iris Images Acquired in Visible Light for Biometric Recognition.
Sensors (Basel). 2020 Feb 28;20(5):1308. doi: 10.3390/s20051308.
7
Noisy Ocular Recognition Based on Three Convolutional Neural Networks.
Sensors (Basel). 2017 Dec 17;17(12):2933. doi: 10.3390/s17122933.
8
Video-based noncooperative iris image segmentation.
IEEE Trans Syst Man Cybern B Cybern. 2011 Feb;41(1):64-74. doi: 10.1109/TSMCB.2010.2045371. Epub 2010 Apr 15.
9
Iris recognition: on the segmentation of degraded images acquired in the visible wavelength.
IEEE Trans Pattern Anal Mach Intell. 2010 Aug;32(8):1502-16. doi: 10.1109/TPAMI.2009.140.
10
CNN-Based Multimodal Human Recognition in Surveillance Environments.
Sensors (Basel). 2018 Sep 11;18(9):3040. doi: 10.3390/s18093040.

引用本文的文献

1
Diverse Dataset for Eyeglasses Detection: Extending the Flickr-Faces-HQ (FFHQ) Dataset.
Sensors (Basel). 2024 Dec 1;24(23):7697. doi: 10.3390/s24237697.
2
Face Image Segmentation Using Boosted Grey Wolf Optimizer.
Biomimetics (Basel). 2023 Oct 12;8(6):484. doi: 10.3390/biomimetics8060484.
3
A Pupil Segmentation Algorithm Based on Fuzzy Clustering of Distributed Information.
Sensors (Basel). 2021 Jun 19;21(12):4209. doi: 10.3390/s21124209.
6
Application of Machine Learning in Air Hockey Interactive Control System.
Sensors (Basel). 2020 Dec 17;20(24):7233. doi: 10.3390/s20247233.

本文引用的文献

2
Noisy Ocular Recognition Based on Three Convolutional Neural Networks.
Sensors (Basel). 2017 Dec 17;17(12):2933. doi: 10.3390/s17122933.
3
Accurate Iris Recognition at a Distance Using Stabilized Iris Encoding and Zernike Moments Phase Features.
IEEE Trans Image Process. 2014 Sep;23(9):3962-3974. doi: 10.1109/TIP.2014.2337714. Epub 2014 Jul 10.
4
Towards online iris and periocular recognition under relaxed imaging constraints.
IEEE Trans Image Process. 2013 Oct;22(10):3751-65. doi: 10.1109/TIP.2013.2260165. Epub 2013 Apr 25.
5
New methods in iris recognition.
IEEE Trans Syst Man Cybern B Cybern. 2007 Oct;37(5):1167-75. doi: 10.1109/tsmcb.2007.903540.
6
DCT-based iris recognition.
IEEE Trans Pattern Anal Mach Intell. 2007 Apr;29(4):586-95. doi: 10.1109/TPAMI.2007.1002.
7
Face description with local binary patterns: application to face recognition.
IEEE Trans Pattern Anal Mach Intell. 2006 Dec;28(12):2037-41. doi: 10.1109/TPAMI.2006.244.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验